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SUMMARY
Oligodendrocyte dysfunction has been implicated in the pathogenesis of neurodegenerative diseases, so un-
derstanding oligodendrocyte activation states would shed light on disease processes. We identify three
distinct activation states of oligodendrocytes from single-cell RNA sequencing (RNA-seq) of mouse models
of Alzheimer’s disease (AD) andmultiple sclerosis (MS): DA1 (disease-associated1, associated with immuno-
genic genes), DA2 (disease-associated2, associated with genes influencing survival), and IFN (associated
with interferon response genes). Spatial analysis of disease-associated oligodendrocytes (DAOs) in the cu-
prizone model reveals that DA1 and DA2 are established outside of the lesion area during demyelination and
that DA1 repopulates the lesion during remyelination. Independent meta-analysis of human single-nucleus
RNA-seq datasets reveals that the transcriptional responses of MS oligodendrocytes share features with
mousemodels. In contrast, the oligodendrocyte activation signature observed in human AD is largely distinct
from those observed in mice. This catalog of oligodendrocyte activation states (http://research-pub.gene.
com/OligoLandscape/) will be important to understand disease progression and develop therapeutic inter-
ventions.
INTRODUCTION

Oligodendrocytes (OLs) generate myelin, enabling fast saltatory

propagation of axon potentials (Simons and Nave, 2016), and

provide metabolic support to axons (F€unfschilling et al., 2012;

Griffiths et al., 1998, 2021c). Selective loss of myelin and OLs

contributes to the pathogenesis of progressive neurodegenera-

tive diseases such as multiple sclerosis (MS) (Trapp and Nave,

2008) and leukodystrophies (Knaap and Bugiani, 2017). Simi-

larly, white matter degeneration and myelin loss have been

observed in other neurodegenerative conditions such as Alz-

heimer’s disease (AD) (Caso et al., 2015). Age-related myelin

breakdown has been postulated to presage AD (Bartzokis,

2011), and the pattern of neurofibrillary changes also bears an in-

verse resemblance to the pattern of myelination (Braak and

Braak, 1996).

While other glial cells, such as microglia, have been extensively

characterized in the context of neurodegeneration, OLs have

received far lessattention.Recentstudieshaveuncovered themo-

lecular heterogeneity of OLs in various brain regions during devel-

opment (Marqueset al., 2016) and indiseasessuchasMS (Absinta

et al., 2021; Jäkel et al., 2019; Schirmer et al., 2019) and AD (Cain
This is an open access article und
etal., 2020;Grubmanetal., 2019;Lauetal., 2020;Lengetal., 2021;

Mathysetal., 2019;Zhouetal., 2020). Transcriptional responsesof

OLs to pathological conditions have also been observed in animal

models of neurodegenerative disease (Falc~ao et al., 2018; Florid-

dia et al., 2020; Lee et al., 2021a; Shen et al., 2021; Zhou et al.,

2020). These heterogeneous populations of OLs may have

differing roles in responding to demyelination and other disease

pathologies. Indeed, developmentally distinct populations of OL

precursor cells (OPCs) were recently shown to generate OL-line-

age cells with differing abilities to respond to demyelination (Craw-

ford et al., 2016). Furthermore, OPCs have been shown to have

roles beyond those related to myelination, including regulation of

angiogenesis in the normal postnatal brain (Yuen et al., 2014)

and antigen presentation and phagocytosis in mouse models of

MS (Falc~ao et al., 2018; Kirby et al., 2019). While these studies

have sought to define molecular signatures of OL subtypes and

characterize their transcriptional responses in diseased states

and models, a systematic understanding of how these transcrip-

tional profiles interrelate with one another across these disease

states and models is lacking. More importantly, it is unclear which

aspects ofOL responses inhumandisease are recapitulated inan-

imal models.
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Here, we performed an integrative single-cell analysis of OL-

lineagecells acrossawide rangeofADandMSmodels.We found

three disease-associated OLs (DAOs) in mouse models: a DA1

state, associated with elevated expression of inflammatory

genes; aDA2state, associatedwith elevatedexpressionof genes

that influenceOL survival; and an interferon-related IFN state.We

validated these states using in situ hybridization and also

observed their distribution relative to cuprizone-induced lesions.

Finally, we analyzed human single-nucleus RNA-sequencing

(snRNA-seq) datasets from three MS studies and six AD studies

to understand which aspects of the DAO gene program are

conserved in human disease. While MS patient OLs shared fea-

tures of the DAO gene program, AD OLs were largely distinct.

This understanding of DAOs and their respective gene programs

will be a valuable resource to gain mechanistic insights and to

target OL-lineage cells for regeneration and repair of the nervous

system in various neurodegenerative diseases.

RESULTS

Multi-dataset integration reveals OL transcriptional
states in AD models and remyelination models of MS
To understand the transcriptional responses of OLs in diverse

AD and MSmodels, we integrated OL-lineage cells from five pri-

mary datasets spanning three AD models and two remyelination

models of MS (Figures 1A and 1B). Among the AD models, we

included OL-lineage cells from well-characterized amyloidosis

models such as the PS2APP mice (Ozmen et al., 2008; Richards

et al., 2003), tauopathy models such as mice harboring the

TauP301S (Yoshiyama et al., 2007) or the TauP301L (Götz

et al., 2001) mutation, and TauPS2APP animals bearing com-

bined amyloid and tau pathology (Grueninger et al., 2010; Lee

et al., 2021a). Among the remyelination models, we included

mice that underwent cuprizone- or lysolecithin-induced demye-

lination. Cuprizone exposure for 4 weeks leads to OL cell death

and robust demyelination followed by spontaneous remyelina-

tion after cuprizone withdrawal (Matsushima and Morell, 2001).

Lysolecithin injection is a focal and acute injury resulting in

demyelination at the injection site, followed by predictable ki-

netics of spontaneous remyelination, mostly complete by

28 days (Gensert and Goldman, 1997; Miron et al., 2013). These

different models were collected as separate datasets, except the

TauP301L and TauPS2APP models, which were part of a single

dataset, collectively referred to here as the TripleTg dataset (Fig-

ure 1A). The TripleTg dataset also contained Trem2KO animals

harboring tau and amyloid pathology (TauPSAPP, Trem2KO), al-

lowing us to understand if aspects of the DAO response could be
Figure 1. Multi-dataset integration of single-cell RNA-seq profiles of O

(A) Workflow for single-cell dataset integration of MS and AD mouse models.

(B) Uniform manifold approximation and projection (UMAP) plot of five independe

analysis using the Seurat dataset integration pipeline.

(C) UMAP plot highlighting the major resting and disease-associated oligodendro

captures global intercluster transcriptional relationships. Dendrogramwas built by

each cluster, restricting to highly variable genes in the data. The percentage of cel

the right.

(D) Dot plot of representative marker genes enriched in baseline OL-lineage subt

axis. Genes are plotted on the x axis. The color scale represents the average ex

percentage of cells in the cluster that express a given gene. See also Figure S1
dependent on Trem2 activation. The datasets representing AD

models were generated from the hippocampus, whereas those

for remyelination models were generated from the corpus cal-

losum. These datasets formed part of studies that were pub-

lished in our previous work, except the lysolecithin and the

TauP301S model, which represent unpublished data (Table S1)

(Lee et al., 2021a; Shen et al., 2021). To identify shared and

distinct OL transcriptional states from these diverse datasets,

we employed Seurat’s data integration pipeline (Stuart et al.,

2019). We first identified the OL-lineage cells from each dataset

based on combinatorial expression of OL-lineage markers such

as Pdgfra, Vcan, Sox10,Mog,Myrf,Mag, and Plp1. Each dataset

was filtered to remove low-quality cells with less than 400 unique

molecular identifiers (UMIs) or greater than 5% mitochondrially

encoded genes (Figure S1A). These OLs were then integrated

either along datasets or in sample batches based on whether

batch effects were observed within each dataset. After integra-

tion, the cells were clustered and labeled based onmarker genes

conserved across all datasets (Figure S1B). No batch effects

were observed in each dataset post-integration (Figure S1C,

top).

We identified a total of 17 clusters in our integrated analysis

(Figure 1C) of 118,279 cells from the five primary datasets (Fig-

ure 1B). Six clusters represented OPCs and committed OL pre-

cursors (COPs), identified based on canonical markers (Marques

et al., 2016, 2018). Three clusters represented immature OL sub-

types such as newly formed OLs (NFOL1 and NFOL2) and

myelin-forming OLs (MFOLs), whereas nine others represented

different mature OL (MOL) subtypes and their disease-associ-

ated transcriptional states (Figures 1C and 1D). Of the six mature

resting subtypes identified in previous studies, we were able to

recover three MOL subtypes, namely MOL1, MOL2, and

MOL5/6, in our analysis. These MOL subtypes expressed ca-

nonical subtype-specific markers, such as Egr1, Btg2, Klf4,

and Arc in MOL1; Hopx, Plin3, Klk6, and S100b in MOL2; and

Ptgds, Il33, and Opalin in MOL5/6 (Figures 1D and S1D). Of

these, MOL1 may represent a dissociation-induced state similar

to what has previously been described for microglia (Haimon

et al., 2018), as it is characterized by immediate-early gene

expression and detected in datasets that were prepared for sin-

gle-cell RNA-seq (scRNA-seq) without the addition of actino-

mycin D before cell capture (Figure S1E, PS2APP, cuprizone,

and lysolecithin) (Wu et al., 2017).

Each mature subtype, MOL2 and MOL5/6, had disease-

associated subclusters that were so named because they

were enriched in the transgenic or treated animals in each da-

taset (Figure S1C, bottom). While these DAOs expressed a
L-lineage cells across brain regions and mouse models

nt datasets from mouse models of neurodegeneration integrated into a single

cytes (DAOs). Cluster labels are represented in the form of a dendrogram that

performing hierarchical clustering on the average gene-expression profiles for

ls from each dataset contributing to each cluster is highlighted in the bar plot on

ypes and DAOs. MOL subtypes and transcriptional states are plotted on the y

pression of a given gene in the cluster, and the size of the dot represents the

and Table S1.
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majority of the baseline MOL-subtype markers identified by

previous work, they also expressed additional genes that

were either very low or absent in healthy controls (Figure 1D).

In the next section, we describe these DAOs and their respec-

tive gene programs.

Three shared disease-associated states identified in
MOL5/6 oligodendrocytes across multiple AD and MS
models
Of the three MOLs observed in our data, MOL5/6 is the most

abundant subtype, comprising 50%–70% of MOLs in datasets

derived from both the hippocampus and the corpus callosum

(Figure 2A, resting MOL5/6). We observed three disease-associ-

ated states ofMOL5/6, whichwe termedMOL5/6_DA1 (with high

expression of C4b, Serpina3n), MOL5/6_DA2 (with high expres-

sion of Cdkn1a, Tnfrsf12a), and MOL5/6_IFN (with high expres-

sion of interferon-stimulated genes such as members of the Ifit

and Oas families) (Figure 1D). Concurrent with the significant

decrease in the proportion of resting MOL5/6 in treatment

groups across the five datasets, there is a varying increase in

the fraction of cells in disease-associated MOL5/6 states in all

models included in our analysis (Figure 2A).

Among the AD models, we observed a significant increase in

the proportion of MOL5/6_DA1 state across all models except

the young 7-month PS2APP and the P301L animals. This in-

crease in proportion was highest in the TauPS2APP animals, fol-

lowed by the TauP301S and old 15-month PS2APP animals. Un-

like the MOL5/6_DA1 state, the MOL5/6_DA2 state did not

increase in old PS2APP animals but increased substantially in

the TauPS2APP and less so in the TauP301S animals (Figure 2A).

Neither of the two states was dependent on Trem2 as seen by

their near comparable activation in TauPS2APP and Tau-

PS2APP; Trem2KO animals. This is in line with the Trem2 inde-

pendence reported in the induction of C4b and Serpina3n in

cortical OLs in the 15-month old 5XFAD animals (Zhou et al.,

2020).

Among the remyelination models, both cuprizone- and lyso-

lecithin-treated animals undergo a predictable decrease in the

number of OLs at the 4-week time point and 5 days post-lesion

(dpl), respectively. The small number of remaining OLs at these

peak demyelination time points shifts to the aforementioned

subtypes. Among these, MOL5/6_DA1 increased in proportion

in both models and did not return to baseline in any of the later

time points examined (Figure 2A). Interestingly, we found a strik-

ing difference in the timing of appearance of the MOL5/6_DA2

state in the two remyelination models. In cuprizone animals,

the DA2 state markedly increased at peak demyelination

(4 weeks), yet it appeared in the lysolecithin animals only at 28

dpl, when remyelination is nearly complete (Figure 2A). This
Figure 2. MOL5/6 exhibits three distinct activation states

(A) Relative proportions of MOL5/6_DA1, MOL5/6_DA2, and MOL5/6_IFN in eac

Differential abundance statistics: *FDR < 0.05, **FDR < 0.01, ***FDR < 0.001 com

(B) Dot plot of marker genes enriched in baseline MOLs, MOL5/6_DA1, MOL5/6

(C–E) DE gene set scores of the genes derived by comparing each disease-asso

MOL5/6_IFN (E). Only unique genes for each state were included.

(F–H) Ingenuity pathway analysis of the DE genes inMOL5/6_DA1 (F), MOL5/6_DA

scores represent predicted inhibition of respective pathways. All DE genes asso
might reflect the difference in remyelination kinetics in the two

models: while the cuprizone-treated animals do not undergo

substantial remyelination until cuprizone iswithdrawnat 4weeks,

the lysolecithin-treated animals are known to undergo active re-

myelination at 10–14 dpl (Gensert and Goldman, 1997; Miron

et al., 2013). Alternatively, it is possible that DA2 cells do appear

at earlier time points in the lysolecithin model, but outside of the

lesion area dissected for this analysis. The lysolecithin-treated

animals also display a marked upregulation of the MOL5/6_IFN

in the earlier time points at 5 and 14 dpl. Strikingly, the transcrip-

tional state shift to DA1 is persistent at recovery time points (4 +

3 weeks and 28 dpl) in both models.

Characterization of gene sets and pathways associated
with disease-associated MOL5/6 subtypes
To identify broad gene signatures associated with each DAO

cluster, we generated pseudo-bulk profiles of resting MOL5/6

and an average of all disease-associated MOL5/6 clusters and

performed differential expression analysis between the two

compartments (Figures S2A and S3A). To identify the gene sig-

natures associated with each cluster of DAOs (example genes

in Figure 2B), we aggregated single cells belonging to MOL5/6,

MOL5/6_DA1, MOL5/6_DA2, and MOL5/6_IFN into separate

pseudo-bulk profiles (Figure S2B). Comparing each disease-

associated MOL5/6 to resting MOL5/6, we obtained 128, 107,

and 78 differentially expressed (DE) genes unique to MOL5/

6_DA1 (Figure 2C), MOL5/6_DA2 (Figure 2D), and MOL5/6_IFN

(Figure 2E), and 303 genes shared among different combination

of states (Figure S2C). Given that the majority of DE genes were

expressed in a gradient across the transcriptional states

(Figures 2B and S2D) at varying fold changes, we classified

genes as being enriched in a particular state if their fold change

was the maximum in that state. Genes were then classified as

enriched in multiple states if the fold change of that gene was

comparable in another DAO cluster (STAR Methods). Example

genes from pan DA1 and DA2 (Figure S2E), DA1-specific (Fig-

ure S2F), DA2-specific (Figure S2G), and IFN-specific (Fig-

ure S2H) gene sets highlight their expression across all the data-

sets incorporated in this study.

Pathway analysis of the DE genes in MOL5/6_DA1 showed an

enrichment in immune-related pathways, including genes

involved in inflammatory response, such as Tnfrsf1a, C4b, Il1b,

Hmox1, Tnf, and Serpina3n, and genes specifically implicated

in neuroinflammation, such as Bace2 and B2m (Figures 2B and

2F and S4A). In addition, a number of genes involved in antigen

presentation, such as the major histocompatibility complex

(MHC) class I and MHC class II molecules, are also upregulated

in these OLs (Figure S4A). Together, these results suggest an

elevated inflammatory signature in MOL5/6_DA1, indicating
h genotype or time point in five datasets represented in the form of a boxplot.

pared with baseline or non-transgenic condition. FDR, false discovery rate.

_DA2, and MOL5/6_IFN.

ciated MOL5/6 to baseline MOL5/6: MOL5/6_DA1 (C), MOL5/6_DA2 (D), and

2 (G), andMOL5/6_IFN (H). High Z scores depict predicted activation and low Z

ciated with each state were included. See also Figures S2–S4 and Table S2.
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that OLs in disease could be not just the target of a dysregulated

immune system but also immunomodulatory themselves.

In contrast, genes upregulated in the MOL5/6_DA2 state

belong to pathways that may influence the survival of OLs,

such as the EIF2 signaling pathway (Ccnd1, Atf3, Bcl2, Ddit3,

Trib3) and the PI3K/AKT signaling pathway (Cdkn1a, Trp53,

Itgb2, Mdm2, Gdf15) (Ishii et al., 2019; Li et al., 2004)

(Figures 2B and 2G). Pathways indicative of cellular stress

such as the unfolded protein response are also elevated in these

OLs. Similarly, a number of pathways that promote myelination,

such as mTOR, insulin receptor, and CNTF signaling, are also

upregulated in the DA2 state (Lebrun-Julien et al., 2014; Stankoff

et al., 2002; Tyler et al., 2009). Some genes elevated in the DA2

state, such as Rras1 and Rras2, have been directly implicated in

driving myelination during development (Sanz-Rodriguez et al.,

2018). Together, these results suggest that the DA2 gene pro-

grams may influence OL survival as well as myelination.

Last, interferon-relatedMOL5/6 upregulated genes involved in

the interferon response from the Ifit and Oas families and the Irf

family of transcription factors, which regulate the expression of

interferons (Figure 2H). Antigen presentation genes such as

MHC class I and class II genes, proteasomes, and transporters

involved in antigen processing, such as Psmb8, Psme1, Tap1,

and Tapbp, are also robustly upregulated in the MOL5/6_IFN

cluster (Figures 2B and S4A). An interferon-related state is also

observed among OPCs (Figures S5A–S5C), which upregulate

the same signature as MOL5/6_IFN. A similar class of OPCs

that upregulated antigen presentation genes was also described

in the inflammatory demyelinating adoptive-transfer cuprizone

model (Kirby et al., 2019).

While there are marked differences in the pathways upregu-

lated by each disease-associated MOL5/6, we observed a strik-

ing similarity in the downregulated genes. All disease-associated

clusters of MOL5/6 robustly downregulated cholesterol biosyn-

thetic pathway genes (Figures 2F–2H), such as Hmgcs1,

Dhcr7, and Acat2. Each disease-associated state of MOL5/6 is

observed in both hippocampus and corpus callosum, indicating

that they are not restricted to a single brain region (Figure S4B).

Despite the large differences in pathology across the ADand re-

myelination models, there is a striking similarity in the transcrip-

tional responses of OLs (Figures S3A and S4B). Similar to switch-

ing of homeostatic microglia to disease-associated microglia

(DAMs) (Deczkowska et al., 2018; Friedman et al., 2018; Keren-

Shaul et al., 2017), our meta-analysis indicates that OLs switch

their transcriptional state from homeostatic/resting states to dis-

ease-associated states (DAOs), downregulating the expression

of resting OL genes such as Mag and Mog and upregulating the

expression of disease-associated genes (Figures 1D and S3A

and S4A). Together, these results establish the disease-associ-

ated states of MOL5/6 and suggest common activation patterns

across diverse models of neurodegeneration.

MOL2 demonstrates an inflammatory DA1 and
interferon-related IFN state that is shared with MOL5/6
MOL2 comprised 10%–15%of the total MOLs in both the corpus

callosum and the hippocampus and displayed two disease-

associated states: Klk8, C4b, and Serpina3n+ MOL2_DA1 and

an interferon-related MOL2_IFN (Figure 3A). Similar to the
6 Cell Reports 40, 111189, August 23, 2022
MOL5/6_DA1 state, MOL2_DA1 was induced in animals with

amyloid and tau as well as the TauPS2APP animals (Figure 3B).

In lysolecithin-treated animals, MOL2_DA1 increased in propor-

tion during the demyelination phase but decreased during the re-

covery time points, although not quite returning to baseline (Fig-

ure 3B). Cuprizone-treated animals showed similar trends but

were not significant in differential abundance analysis.

We also generated a list of DE genes comparing MOL2_DA1

with its resting counterpart MOL2. DE genes between

MOL2_DA1 and MOL2 correlated well with the DE genes be-

tweenMOL5/6_DA1 andMOL5/6, but not well with the DE genes

between MOL5/6_DA2 and MOL5/6, suggesting that

MOL2_DA1 and MOL5/6_DA1 represent a similar disease-asso-

ciated state that manifests in both MOL subtypes (Figures 3C

and 3D). Only a handful of MOL2_DA1-associated DE genes,

such as Klk8 and Fxyd7, are upregulated significantly more in

MOL2_DA1 compared with MOL5/6_DA1 (Figure 3C). Pathway

analysis of the DE genes enriched in MOL2_DA1 highlights a

similar immune signature that was noted in MOL5/6_DA1 (Fig-

ure 3E). Similarly, the interferon-related MOL2_IFN represented

a small cluster of MOL2 that upregulated the interferon-related

gene set similar to MOL5/6_IFN (Figure 3A).

Interestingly, we did not observe a DA2-like state for MOL2,

suggesting that the two MOL populations might have differing

abilities to respond to disease pathology. However, the lack of

a DA2-like state for MOL2 may also be a consequence of lower

sampling of this rarer of the two MOL populations. Together,

these results establish OLs as dynamic architects during neuro-

degenerative disease, able to execute threemajor disease-asso-

ciated transcriptional states: a DA1, a DA2, and an IFN state.

These disease-associated states, when combined with the

baseline heterogeneity of MOLs, give OLs a repertoire of tran-

scriptional states that may have varied functional implications

for disease progression and outcomes.

DAOs are established outside of microglia-infiltrated
lesions and then spread throughout the corpus callosum
during remyelination in the cuprizone model
Our scRNA-seq meta-analysis uncovered diverse OL responses

in different pathological contexts. Our previous study validated

MOL_DA1 and MOL_DA2 states in the amyloid and tau models

of AD (Lee et al., 2021a). We sought to further validate these find-

ings and investigate the spatial localization of DAOs with respect

to other glial subtypes such as DAMs and disease-associated

astrocytes (DAAs) in a remyelination model of MS. To this end,

we assayed the expression of candidate DAO markers along

with markers of other glial subpopulations in the cuprizone

model usingmultiplexed single-molecule fluorescence in situ hy-

bridization (smFISH). We quantified the expression level of 31

RNA transcripts that could collectively identify (1) OPC and

OL-lineage states, including resting MOL subtypes and DAO

states; (2) homeostatic microglia and DAMs; (3) homeostatic as-

trocytes and DAAs; (4) endothelial cells; and (5) neurons (Fig-

ure 4A). Consistent with the time points assayed by our

scRNA-seq data, we collected smFISH at baseline (n = 4),

4 weeks post cuprizone treatment (4 weeks, n = 4), and 4 weeks

of cuprizone treatment followed by 3 weeks recovery (4 +

3 weeks, n = 4). Data were collected from the anterior part of
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Figure 3. MOL2 demonstrates an inflammatory and interferon-related activation state that is shared with MOL5/6

(A) Dot plot of marker genes enriched in resting MOLs, MOL2_DA1, and MOL2_IFN.

(B) Relative proportions of resting MOL2, MOL2_DA1, and MOL2_IFN in each genotype or time point in the five separate datasets represented in the form of a

boxplot. Differential abundance statistics: *FDR < 0.05, **FDR < 0.01, ***FDR < 0.001 compared with baseline or non-transgenic condition. FDR, false discovery

rate.

(C and D) Four-way comparison of DE genes in MOL2_DA1 (y axis) with DE genes in MOL5/6_DA1 (C; x axis) or MOL5/6_DA2 (D; x axis). Each point represents

one gene colored bywhether logFCR 1.75 and FDR% 0.05 in one or both differential expression analyses (red forMOL5/6_DA1 [C] orMOL5/6_DA2 [D], green for

MOL2_DA1, or blue for both). Corresponding numbers of DE genes are shown near the borders of the plot. Diagonal line, y = x.

(E) Ingenuity pathway analysis of DE genes inMOL2_DA1. High Z scores depict predicted activation and low Z scores depict predicted inhibition of the respective

pathway. All genes associated with the MOL2_DA1 state were included. See also Figures S4 and S5 and Table S2.
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the corpus callosum between Bregma levels �0.1 and 0.6. The

resulting expression matrix was filtered to remove low-quality

cells and potential doublets (STAR Methods) (Figure S6A). No

batch effects were observed in the dataset (Figure S6B).

To specifically validate our scRNA-seq dataset, which was

generated from the corpus callosum, we computationally identi-

fied the boundary of the corpus callosum using the expression of

neuronal and OL markers (Figure S6C; STAR Methods). Unsu-

pervised clustering analysis of the resulting expression matrix

identified all MOL and DAO subpopulations found in our sin-

gle-cell meta-analysis: (1) MOL2 (Klk6+; Hopx+), (2) MOL5/6

(Jph4hi and Il33hi), (3) two C4bhi Serpina3nhi DA1 states corre-

sponding to MOL5/6_DA1 and MOL2_DA1, (4) Cdkn1ahi C4blo

Serpina3nlo DA2 population, and (5) Irf7hi IFN state (Figures 4B

and 4C). All clusters were composed of cells from all experi-

mental batches (Figure S6B). At baseline, MOL5/6 made up for

a larger proportion of OLs in the corpus callosum compared

with MOL2. As expected, resting MOLs decrease and DAOs in-

crease in proportion post cuprizone treatment (Figure 4D). A

large majority of the remaining OLs at 4 weeks adopt a DA1 or

DA2 phenotype. While the DA2 phenotype resolves at 4 +

3 weeks, a majority of the recovered OLs at 4 + 3 weeks still

adopt a DA1 phenotype (Figure 4D). The persistence of the

DA1 state was also observed in the scRNA-seq meta-analysis:

the increase in proportion of the DA1 state at 4 + 3 weeks noted

in the smFISH dataset may be a result of sensitivity differences

between scRNA-seq and smFISH. Together, these results

corroborate an alteration in the transcriptional profile of OLs dur-

ing the demyelination and remyelination process.

In addition to DAOs, we also identified other clusters corre-

sponding to homeostatic microglia (Tmem119+), DAMs

(Tmem119+, Gpnmb+, Spp1+), astrocytes (Aqp4+), reactive as-

trocytes (Aqp4+, Serpina3n+, C4b+), and endothelial cells (Pe-

cam1+) (Figure 4C). We replicated our previously reported in-

crease in DAMs and reactive astrocytes at 4 weeks post

cuprizone treatment compared with baseline (Figure 4D) (Shen

et al., 2021). While microgliosis largely resolves at 4 + 3 weeks,

astrogliosis persists into the recovery time point (Figure 4D).

Next, we investigated the spatial relationship of DAOs to the

putative lesion site and to other demyelination-associated glial

populations. Our data were collected from sections in which

the stereotypic cuprizone-induced lesion appears at the lateral

ends of the corpus callosum (Figure 4E, insets, and S6D). To

quantify the spatial relationship of DAOs to this putative lesion

site, we identified the midline of the corpus callosum and

computed the distance of every cell to that midline (Figure S6C).

To investigate how cell proportion changed with varying dis-
Figure 4. In situ hybridization reveals distinct DA1 and DA2 subtypes i

(A) Automated spatial RNA transcriptomics workflow used to validate candidate

(B) UMAP plot highlighting the major glial subtypes recovered from the dataset ac

form of a dendrogram built by performing hierarchical clustering on the average

(C) Dot plot of marker genes enriched in DAO, DAM, and DAA subtypes in the co

(D) Relative proportions of DAO and other glial subtypes in the corpus callosum

**FDR < 0.001.

(E) Spatial distribution of all major cell classes across a representative section for

as indicated (Bregma level 0.5 at baseline and 0.6 at 4 and 4 + 3 weeks). Insets

(F) A stacked bar plot representing the proportions of cell types across �600-mm

mean ± SEM. See also Figure S6.
tances from this midline, we normalized this distance from the

midline to go from �1 at the leftmost part to +1 at the rightmost

part of the corpus callosum. At baseline, homeostatic MOLs, as-

trocytes, and microglia were all evenly distributed along the L-R

axis (Figures 4E and 4F, top). At 4 weeks post cuprizone treat-

ment, we observed abundant microglial proliferation and migra-

tion into the lesion site (Figures 4E and 4F, middle). Surviving or

newly differentiated OLs at 4 weeks were situated away from the

lesion site, to the midline of the corpus callosum, and had adop-

ted either a DA1 or a DA2 phenotype. Interestingly, while DAMs

were largely confined to the lesion site and DAOs away from the

lesion site, reactive astrocytes were more evenly distributed

along the L-R axis, outlining the boundary of the entire corpus

callosum. At 4 + 3 weeks, as themicrogliosis resolved, the lateral

ends of the corpus callosum containing the lesion site were repo-

pulated by DA1 OLs as noted by the largely even distribution of

MOL5/6_DA1 andMOL2_DA1 along the L-R axis (Figures 4E and

4F, bottom). It is also noteworthy that the DA1 state persists into

4 + 3 weeks, whereas the DA2 reaches nearly complete resolu-

tion (Figures 4E, 4F, and S6E). Taken together, these results vali-

date the DAO states observed in our scRNA-seq meta-analysis

and put them in the spatial context of a cuprizone-induced lesion

during demyelination and remyelination.

Cross-species integration of OL-lineage cells defines
resting OL subtypes in human with some transcriptional
similarity to mouse
Next, we wondered whether the disease-associated gene signa-

tures identified in mouse models are also elevated in human dis-

ease. However, a necessary prerequisite to this analysis was to

build an understanding of the heterogeneity of resting OLs in hu-

man and relate those to mouse subtypes. While there is a

consensus in the literature on the heterogeneity of resting OL

subtypes in mouse, a similar consensus for human OLs is lack-

ing. To characterize baseline human OL heterogeneity and relate

it to mouse subtypes, we performed an integrative analysis of

control OLs derived from mouse and human datasets incorpo-

rated into our study.

To this end, we selected OL-lineage cells derived from control

subjects in human AD (Cain et al., 2020; Grubman et al., 2019;

Mathys et al., 2019) and MS (Absinta et al., 2021; Jäkel et al.,

2019; Schirmer et al., 2019) datasets using canonical OL-lineage

markers such as SOX10,OLIG1,OLIG2, PDGFRA, VCAN,MOG,

MYRF, and PLP1. We similarly selected OL-lineage cells from

the mouse datasets included in our study. Using 2,000 genes

that are commonly variable across all datasets derived from

both species, we integrated these datasets using Seurat’s
n the cuprizone model

DAO gene expression and investigate spatial localization.

ross all experimental runs and time points. Cluster labels are represented in the

gene-expression profile for each cluster.

rpus callosum.

across the three time points. Differential abundance statistics: *FDR < 0.01,

each time point in a single cuprizone experiment. Cells are colored by cell class

mark the degraded myelin stain highlighting the putative lesion site.

bins generated along the left-right axis of the corpus callosum. Bars and lines,

Cell Reports 40, 111189, August 23, 2022 9



A

B

C

D

Figure 5. Cross-species integration of resting OL-lineage subtypes in human and mouse

(A) UMAP plot representing an integrated analysis of control OLs from six independent mouse and six independent human datasets colored by dataset and split

by species.

(B) UMAP plot representing the clustering results from an integrated analysis of control OLs from human andmouse. Cluster labels are represented in the form of a

dendrogram as in Figure 1C. The proportion of cells from each species for every cluster is represented in the bar plot on the right.

(C) Gene set score of mouse OL-lineage subtype markers represented in the form of a UMAP plot split by species.

(D) Split violin plots showing expression of conserved marker genes associated with resting OL-lineage subtypes in human and mouse. See also Figure S7.
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MNN approach, resulting in a combined analysis of �101,000

cells (Figure 5A). Subclustering of this integrated dataset re-

sulted in four major clusters: OPC, COP, and two broad MOL

subtypes (Figure 5B). Among the MOLs, we found that a subset

of the human OLs co-clustered with MOL2, whereas others co-
10 Cell Reports 40, 111189, August 23, 2022
clustered with MOL5/6 (Figure S7A). We named these clusters

hOligo1 and hOligo2, respectively. Similarly, using the gene set

score of mouse MOL-specific gene sets, we found that MOL2-

specific genes are enriched in hOligo1 and MOL5/6-specific

gene sets are enriched in hOligo2 (Figures 5B and 5C). We
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highlight example conserved and unique genes between human

and mouse in Figure 5D.

We used these clustering results to generate sample-specific

pseudo-bulks of the human OL subtypes and performed a sub-

type-specific differential expression analysis to find other

markers that are enriched in hOligo1 and hOligo2 (Figure S7B).

All subsequent annotations of human OL-lineage cells in MS

and AD datasets were performed using these marker genes

(Figure S7C).

Mouse DAO response is recapitulated in human OL
responses in MS
OL-lineage cells are vulnerable in MS. To describe disease-

specific transcriptional changes in MS OLs and understand

their overlap with our analysis of mouse models, we performed

an integrated analysis of OL-lineage cells from three published

snRNA-seq datasets fromMS patients (Absinta et al., 2021; Jä-

kel et al., 2019; Schirmer et al., 2019). Integrated analyses re-

vealed a cluster of OPCs and four MOLs (Figure 6A), including

the two major resting human subtypes uncovered in the previ-

ous section (RASGRF2 and RASGRF1+ hOligo1 and PALM2,

QDPR, and OPALIN+ hOligo2) and two others that share

markers with or branch out of hOligo2, which we dubbed hO-

ligo3 (FRY, RRAS2+) and hOligo4 (HSPH1, FOS, DNAJA4+)

(Figure 6B). Each OL cluster was represented in all datasets

(Figure 6A, right, and Figure S8A) and was composed of cells

from multiple patients except for hOligo4, a large proportion

of which came from a single patient from Absinta et al. (2021)

(Figure S8B). Each cluster was also identifiable in a separate in-

dependent analysis of each dataset except for hOligo4, which

clustered out only in Schirmer et al. (2019) and Absinta et al.

(2021) (Figure S8C). Markers of MOL subtypes were robustly

expressed across all datasets (Figure S8D). While no differ-

ences in abundance of hOligo1 and hOligo2 were observed be-

tween MS and control patients, both hOligo3 and hOligo4

showed modest elevation in proportion in MS patients (Fig-

ure S8E). However, these differences were significant only in

Schirmer et al. (2019) for hOligo3 and Absinta et al. (2021) for

hOligo4.

To assess whether the gene sets associated with the DA1,

DA2, and IFNOLs identified in mousemodels were also elevated

in OLs from MS patients, we aggregated all cells from OL sub-

types hOligo1–4 into a single pseudo-bulk expression profile

(STARMethods) and scored the pseudo-bulk profiles for expres-

sion of the mouse DAO genes associated with DA1, DA2, and

IFN states (Figure 6C). We detected an increased expression

of DA1-, DA2-, and IFN-related gene set scores in OLs obtained
Figure 6. Integration of human OLs from MS datasets reveals that sele

(A) UMAP representation of the integrated human OLs from three published MS

Figure 1C. Percentage of cells from each dataset contributing to each cluster is

(B) Dot plot of marker genes enriched in human OL-lineage subtypes across the

(C) Distribution of scores for mouse-derived gene sets across human OLs derive

group. P represents p (unadjusted), t test.

(D) DE gene set scores of genes derived from an integrated differential expression

control individuals.

(E) Heatmap of the mouse DAO genes also differentially expressed in hOligo2 acro

the left are colored in purple by whether the gene was classified as a DA1, DA2

Table S3.

12 Cell Reports 40, 111189, August 23, 2022
from MS patients across all datasets, although the differences

were largest in Absinta et al. (2021) and Schirmer et al. (2019)

(Figure 6C).

We next sought to assess (1) which mouse DAO genes are

conserved in a separate and independent differential expres-

sion analysis of human OLs in MS and (2) if there are addi-

tional genes that reveal human-specific OL activation in MS.

To this end, we generated pseudo-bulk RNA-seq profiles by

separately aggregating single cells from control and MS pa-

tients in hOligo1 and hOligo2. We aggregated cells belonging

to hOligo3 and hOligo4 together with hOligo2 as they largely

shared markers and seemed to be disease-elevated states

of hOligo2 (Figure S8E). We then performed differential gene

expression analysis between control and MS samples within

both hOligo1 and hOligo2 separately and mapped their

expression back to UMAP coordinates (Figure S8F). We found

the largest number of DE genes between control and MS pa-

tients in the OPALIN+ hOligo2 (Figures S9A and S6D), which

were also shared with the MS versus control DE profile in

RASGRF1+ hOligo1 (Figure S9B). These genes were elevated

across all three datasets (Figure 6D). A number of these DE

genes are shared with mouse DA1, DA2, and IFN states (Fig-

ure 6E, denoted in purple, and Figures S9C–S9E). Of the

shared genes, we found DA2 genes related to the EIF2

signaling pathway, such as EIF5, ATF3, EIF1, DDIT3, and

RPL13, and to the unfolded protein response, such as

SQSTM1 and CEBPZ (Figures 6E and S9D). Similarly, consis-

tent with the upregulation of antigen presentation pathway

genes in DA1 and IFN OLs from mouse models, OLs derived

from MS patients also upregulated genes such as NLRC5,

B2M, and PSMB6 (Figures 6E and S9A). This is in line with

several reports of antigen presenting capabilities of OLs and

precursors (Falc~ao et al., 2018; Kirby and Castelo-Branco,

2020; Kirby et al., 2019).

MS OLs also upregulated unique genes hinting at human-

specific OL activation (Figures S9C–S9E). Among those were

genes indicative of cellular stress, such as the unfolded pro-

tein response (PFDN4, UBB, UBC, UBA1) and heat-shock

response (HSPA4L, HSPA4, HSPA5, HSPH1, ST3, DNAJA1),

and genes indicative of metabolic shift, such as oxidative

phosphorylation (COX5B, COX7B) and the sirtuin pathway

(SIRT2, SOD1, SLC25A6). In addition to the antigen presenta-

tion pathway genes shared with mouse models, MS OLs also

upregulated genes involved in phagosome maturation, such

as PRDX5, VAMP3, and ATP6AP1. Conversely, we observed

downregulation of cell adhesion molecules such as NRXN3,

CDH1, CDH23, CDH11, and NLGN3; ECM proteins such as
ct orthologs of mouse DAO genes are elevated in MS

datasets. Cluster labels are represented in the form of a dendrogram as in

highlighted in the bar plot.

integrated MS datasets.

d from MS and control individuals. Gene set scores were centered to control

analysis comparing pseudo-bulks of hOligo2 fromMS patients with those from

ss control andMS patients. The full list of DE genes is in Figure S9. Columns on

,or IFN gene in the mouse-specific analysis. See also Figures S8 and S9 and
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Figure 7. Integration of six AD datasets reveals that human OLs exhibit an AD-associated DE profile that is largely distinct from the mouse

DAO signature
(A) UMAP representation of the integrated human OLs across six AD datasets. Cluster labels are represented in the form of a dendrogram as in Figure 1C.

Percentage of cells from each dataset contributing to each cluster is highlighted in the bar plot.

(B) Dot plot of marker genes enriched in human OL-lineage subtypes across the integrated AD datasets.

(C) Distribution of scores for mouse-derived gene sets across hOligo2 undergoes little to no change in high-pathology AD patients compared with low-pathology

individuals. Gene set scores were centered to the low-pathology group. D represents the difference between high pathology and low pathology. P represents p

(unadjusted), t test.

(D) DE gene set scores of genes derived from a differential expression analysis comparing pseudo-bulks of hOligo2 from high-pathology AD patients with those

from low-pathology individuals. Only upregulated genes are shown on the left and only downregulated genes are shown on the right. All gene set scores were

centered to the low-pathology group. A heatmap of all DE genes is in Figure S10. See also Figure S10 and Table S3.
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ADAMTS14, ADAMTS17, and COL16A1; specific contactins

required for the organization of axonal paranodes, such as

CNTNAP2; and genes required for formation of the nodes of

Ranvier, such as GLDN (Çolako�glu et al., 2014; Feinberg

et al., 2010; Maluenda et al., 2016) (Figure S9A). Collectively,

these results suggest that OLs in MS upregulate aspects of

the mouse DAO gene signature corresponding to DA1, DA2,

and IFN OLs, while also upregulating human-specific genes.

Although our data do not indicate that these activations

occurred in distinct cell populations in MS patient-derived

OLs (Figure S8F), this may be a result of the sample-level inte-

gration performed in our analysis to mitigate patient-specific

clustering.
Human AD OL response is largely distinct
Extensive evidence from multiple studies has reported the

vulnerability of OLs in AD. However, it is not clear how these re-

sponses relate to one another and which aspects of these re-

sponsesmight be recapitulated in animal models. We performed

an integrated analysis of OL-lineage cells from a number of

recently published snRNA-seq datasets from AD patients to (1)

understand if the responses observed in our mouse models

are observed in human AD and (2) identify a shared AD-associ-

ated OL gene signature across multiple studies. To this end,

we identified human OL-lineage cells from six snRNA-seq data-

sets derived from AD patients (Cain et al., 2020; Grubman et al.,

2019; Lau et al., 2020; Leng et al., 2021; Mathys et al., 2019;
Cell Reports 40, 111189, August 23, 2022 13
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Zhou et al., 2020) and integrated �139,000 cells together using

Seurat’s MNN approach (Figure S10A).

Interestingly, while these datasets were collected from

different brain regions, including the dorsolateral prefrontal cor-

tex, superior frontal gyrus, hippocampus, and entorhinal cortex,

we observed the same subtypes of MOLs in the integrated anal-

ysis: a RASGRF2 and RASGRF1+ hOligo1 and a PLXDC2,

PALM2, andOPALIN+ hOligo2 (Figures 7A and 7B). Each cluster

of OLs was represented in all datasets (Figure 7A, right, and Fig-

ure S10A) and was also recovered in a separate independent

analysis of each AD dataset, suggesting that the integration re-

sults were not dominated by signals from a single or a few data-

sets (Figure S10B). Each cluster was composed of cells from a

majority of the 31 patients (cognitively normal and AD patients)

incorporated into the analysis (Figure S10C). MOL markers

used to define clusters were robustly expressed across all data-

sets (Figure S10D). We did not observe a state similar to hOligo3

or hOligo4 in the AD datasets, which may be a result of differ-

ences in brain regions profiled or pathology observed in MS

and AD.

We next sought to assess whether the gene sets associated

with DA1, DA2, and IFN OLs identified in our mouse meta-anal-

ysis are also elevated in OLs derived from AD patients. Thus, we

stratified AD patients into low (Braak stage in 0, I, and II and CE-

RAD/plaque score in no AD or possible AD), intermediate (Braak

stages III and IV and CERAD/plaque score probable AD), and

high (Braak stages V and VI and CERAD/plaque score in prob-

able AD and definite AD) pathology groups and aggregated all

the MOLs into a single pseudo-bulk expression profile (STAR

Methods). Scoring the pseudo-bulk profiles for expression of

themouse DAO genes associated with DA1, DA2, and IFN states

revealed no differences in gene set scores among low-, interme-

diate-, and high-pathology individuals (Figure 7C).

Given this lack of correspondence between mouse DAO and

human AD response, we sought to define an AD-associated OL

signature that is shared across all the datasets integrated in our

analysis. To this end, we aggregated single cells in each broad

MOL cluster hOligo1 and hOligo2 to generate pseudo-bulk

RNA-seq profiles across the three patient groups defined

above. For both MOL subtypes, genome-wide differential

expression analysis was performed between cells derived

from high-pathology individuals and low-pathology individuals.

Within hOligo1, we identified six DE genes between high- and

low-pathology individuals. Performing the same analysis with

hOligo2 yielded 41 genes increased and 43 genes decreased

in hOligo2 derived from high-pathology individuals compared

with those derived from low-pathology individuals (Fig-

ure S10E). These genes were largely distinct from the mouse-

derived DAO signature associated with DA1 and DA2 OLs.

However, the gene sets derived from the human meta-analysis

are robustly changed in OLs derived from high-pathology AD

individuals across all datasets (Figure 7D). Although hOligo1

yielded fewer DE genes between low- and high-pathology indi-

viduals, a similar trend in fold changes was observed in hOligo1

(Figure S10F). Observing the average expression of this AD-

elevated gene set along the UMAP coordinates highlights the

overall enrichment of this AD-associated signature in both hO-

ligo1 and hOligo2 (Figure S10G).
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Among the genes elevated in OLs in AD are lipid biosynthesis

and metabolism genes such as MID1IP1 and ABCA6, cytoskel-

etal proteins such as ANLN, and proteins involved in cell adhe-

sion such as CTNNA1, RELN, and CLDN15. Only five genes

were shared between the human AD-associated gene signature

and the mouse model-derived DAO signature. These included

cell division genes such as PNPT1, SSB, andMITD1 and cell-cy-

cle regulators RGCC and CPQ. Taken together, these results

provide a set of commonly activated genes in OLs derived

from AD patients and highlight their distinct transcriptional

response from that observed in MS patients and mouse models

of both diseases.

DISCUSSION

Here, we performed a multi-dataset integration of OL-lineage

cells obtained fromdiverse datasets representingmousemodels

of neurodegenerative disease and postmortem data from

patients. Our study highlights shared DAO states and gene

expression programs across mouse models, places these tran-

scriptomic states in an anatomical context in situ, and estab-

lishes the relevance of the findings in human disease.

Among the DAOs identified by our analysis, DA1OLswere uni-

versally induced across all analyzed models. These OLs upregu-

lated expression of immunomodulatory molecules, including cy-

tokines, CD receptors, MHC class I and II molecules, and

complement. Similar OLs have been observed in the experi-

mental autoimmune encephalomyelitis (EAE) model and in hu-

man MS lesions and have been hypothesized to increase OL

susceptibility to cytotoxic CD8+ T cells (Falc~ao et al., 2018; Kirby

and Castelo-Branco, 2020; Kirby et al., 2019). In addition, DA1

OLs also upregulate Tnfrsf1a, which harbors a number of MS

susceptibility alleles (International MS Genetics Consortium

et al., 2009). These findings, in the context of previously pub-

lished studies, suggest that this immunogenic state may be

damaging in disease, providing further evidence that OLs may

not only be targets of the immune system but may also have

immunomodulatory properties that influence disease outcomes.

Furthermore, we show that this immunogenic phenotype is

also observed in amyloid and tau models of AD and may repre-

sent a common neuroinflammatory mechanism across diverse

neurodegenerative states. Similar C4b+ and Serpina3n+ OLs

were also described in the 5XFAD model (Zhou et al., 2020).

This immune phenotype may result from pathological aggre-

gates of amyloid or tau, increase in inflammatory cytokines, or

axonal damage/degeneration signals that are induced in most

of the analyzed models. The strong activation of the DA1 signa-

ture in the TauPS2APPmice, which contain abundant dystrophic

neurites (Lee et al., 2021b) compared with the PS2APP or

TauP301L mice, suggests that axonal damage may strongly

induce this phenotype in OLs wrapping dystrophic axons.

In stark contrast to DA1 OLs, DA2 OLs upregulate pathways

that influence OL survival. The upregulation of EIF2 signaling in

the DA2 OLs is noteworthy. Previous studies have identified

loss-of-function mutations in EIF2B in patients with vanishing

white matter disease (VWMD) (Leegwater et al., 2001; Li et al.,

2004). Furthermore, specific impairment of EIF2B activity in

OLs has been shown to reproduce the pathology of VWMD in
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mice (Lin et al., 2014). Other pathways upregulated by DA2 OLs,

such as mTOR and CNTF signaling, are known to promote sur-

vival and differentiation of OPCs as well as myelination, hinting

at a possible cytoprotective effect of DA2 OLs (Grier et al.,

2017; Lebrun-Julien et al., 2014; Louis et al., 1993; Sanz-Rodri-

guez et al., 2018; Stankoff et al., 2002; Tyler et al., 2009). Howev-

er, the expression of cell-cycle arrest and pro-apoptotic markers

such as Cdkn1a, Gadd45a, and Bax also hints at an ongoing

struggle for survival.

Notably, all DAO states are accompanied by a downregulation

in the components of the cholesterol biosynthetic pathway.

Cholesterol biosynthesis supports myelin biogenesis and axon

ensheathment (Berghoff et al., 2017; Saher et al., 2005). Yet,

recent evidence suggests that the inhibition of a subset of en-

zymes within the cholesterol biosynthesis pathway promotes

OL formation via the accumulation of selected sterols (Hubler

et al., 2018). Strikingly, Ebp, one such enzyme, is specifically

downregulated in the DA2 OLs.

Spatial analysis of DA1 and DA2 OLs in the cuprizone model

highlighted striking differences in the spatial patterns of DA1

and DA2 states during remyelination. While both DAOs are es-

tablished outside the microglia-infiltrated lesion site during

demyelination, DA1 OLs persist into the 4 + 3 week recovery

time point, spreading into the lesion site, following the resolution

of microgliosis (Figure 4E). This persistence, which was also

observed in our single-cell meta-analyses, suggests that,

despite substantial recovery of OL numbers during remyelination

asmeasured by electronmicroscopy (EM) (Shen et al., 2021), the

newly generated OLs do not default to a resting transcriptional

state. This may not only have implications for neuroregeneration

and repair but also provide biomarkers for early remyelination.

Whether these new OLs still expressing disease-associated

genes persist much longer after 4 + 3 weeks or lose their ability

to remyelinate over repeated rounds of de- and remyelination re-

mains an open question. Further studies with longer endpoints

will be required to understand the specific functional roles of

different MOLs in disease progression and/or repair.

Our analysis of human snRNA-seq studies fromMS highlighted

both similarities and differences with the analyzed remyelination

mousemodels. While thesemodels do not have a strong adaptive

immune system component present in MS, orthologs of DA1 and

DA2 genes were elevated in MS OLs, highlighting both DA1- and

DA2-like activation in MS. However, some orthologs of genes

elevated inMSwerenot altered in themodels, highlighting features

of human-specific activation. Among the human-specific DE gene

pathways inMSOLswere those indicative of cellular stress and in-

flammatory pathology, reflecting aspects of MS that are not

captured in remyelinationmodels. However,we also identified up-

regulation of putatively protective pathways, such as sirtuin

signaling genes that are known to have a role in OL differentiation

and remyelination (Beirowski et al., 2011; Ma et al., 2022). The dif-

ferential expression profile we observed in ADwas almost entirely

distinct from the DAO profile observed in mouse models, except

for a handful of genes. This is similar to human ADmicroglia (Srini-

vasan et al., 2020), which were found to have a signature largely

distinct from theDAMsignature identified inmousemodels (Decz-

kowska et al., 2018; Friedman et al., 2018; Keren-Shaul et al.,

2017). Collectively, our multi-dataset integration study uncovered
three major DAO states and established their relevance in human

disease. More broadly, these gene expression data and analyses

will suggest therapeutic approaches for remyelination strategies

aimed at modifying disease outcomes by dampening negative

states and enhancing beneficial ones.
Limitations of the study
While the differences betweenmousemodel-related DAO signa-

ture and patient-related AD signature could be a result of intrinsic

differences in mouse and human OL responses, the activation of

many of the DAO genes in MS brains suggests that this may not

be the only reason. An alternative possibility is that the AD-

related OL pathology may be more pronounced and similar to

mouse models in white matter areas, which remain unrepre-

sented in the published datasets analyzed in our study. Addi-

tional profiles with increased resolution across various stages

of AD and across many brain regions may shed further light on

AD-related OL changes. Our catalog of DAOs and their associ-

ated gene programs will facilitate such future studies.
STAR+METHODS

Detailed methods are provided in the online version of this paper

and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY
B Lead contact

B Materials availability

B Data and code availability

d EXPERIMENTAL MODEL AND SUBJECT DETAILS

B Animals

d METHOD DETAILS

B Preparation of single-cell suspensions from the lyso-

lecithin treated animals

B Preparation of single-cell suspensions from the Ta-

uP301S animals

B Single-cell RNA-seq library preparation and

sequencing

B In situ hybridization, imaging and image analysis

d QUANTIFICATION AND STATISTICAL ANALYSIS

B Raw data analysis

B Mouse scRNA-seq meta-analysis

B Pseudo-bulk analysis of sc/snRNA-seq datasets

B Differential expression (DE) analysis from pseudobulk

sample

B Gene set analysis

B Human scRNA-seq meta-analysis

B Differential expression (DE) analysis from pseudobulk

sample to obtain an MS and AD-associated oligoden-

drocyte activation signature

B Analysis of ISH data
SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.

celrep.2022.111189.
Cell Reports 40, 111189, August 23, 2022 15

https://doi.org/10.1016/j.celrep.2022.111189
https://doi.org/10.1016/j.celrep.2022.111189


Resource
ll

OPEN ACCESS
ACKNOWLEDGMENTS

We thank Alicia Nugent and Kevin Huang for helpful feedback on the manu-

script and facility staff at Genentech for vivariummaintenance and core facility

assistance. This work was supported by Genentech.

AUTHOR CONTRIBUTIONS

Conceptualized and designed study, B.A.F., S.P., T.J.Y., and C.J.B.; per-

formed experiments, S.-H.L., K.S., Y.-A.S., Y.W., M.O.-G., N.K., and S.T.V.;

analyzed data, S.P. with input from B.A.F.; prepared figures, S.P.; compiled

GEO datasets, M.R.; wrote the manuscript, S.P., B.A.F., and T.J.Y. with input

from all authors.

DECLARATION OF INTERESTS

All authors are current or former employees of Genentech, Inc.

Received: September 13, 2021

Revised: May 17, 2022

Accepted: July 20, 2022

Published: August 23, 2022

REFERENCES

Absinta, M., Maric, D., Gharagozloo, M., Garton, T., Smith, M.D., Jin, J., Fitz-

gerald, K.C., Song, A., Liu, P., Lin, J.-P., et al. (2021). A lymphocyte–microglia–

astrocyte axis in chronic active multiple sclerosis. Nature 597, 709–714.

https://doi.org/10.1038/s41586-021-03892-7.

Bartzokis, G. (2011). Alzheimer’s disease as homeostatic responses to age-

related myelin breakdown. Neurobiol. Aging 32, 1341–1371. https://doi.org/

10.1016/j.neurobiolaging.2009.08.007.

Beirowski, B., Gustin, J., Armour, S.M., Yamamoto, H., Viader, A., North, B.J.,

Michán, S., Baloh, R.H., Golden, J.P., Schmidt, R.E., et al. (2011). Sir-two-ho-

molog 2 (Sirt2) modulates peripheral myelination through polarity protein Par-

3/atypical protein kinase C (aPKC) signaling. Proc. Natl. Acad. Sci. USA 108,

E952–E961. https://doi.org/10.1073/pnas.1104969108.

Berghoff, S.A., Gerndt, N., Winchenbach, J., Stumpf, S.K., Hosang, L.,
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Jäkel, S., Agirre, E., Mendanha Falc~ao, A., van Bruggen, D., Lee, K.W., Knue-

sel, I., Malhotra, D., Ffrench-Constant, C., Williams, A., and Castelo-Branco,

G. (2019). Altered human oligodendrocyte heterogeneity in multiple sclerosis.

Nature 566, 543–547. https://doi.org/10.1038/s41586-019-0903-2.

Keren-Shaul, H., Spinrad, A., Weiner, A., Matcovitch-Natan, O., Dvir-Sztern-

feld, R., Ulland, T.K., David, E., Baruch, K., Lara-Astaiso, D., Toth, B., et al.

(2017). A uniquemicroglia type Associated with restricting development of Alz-

heimer’s disease. Cell 169, 1276–1290.e17. https://doi.org/10.1016/j.cell.

2017.05.018.

Kirby, L., and Castelo-Branco, G. (2020). Crossing boundaries: interplay be-

tween the immune system and oligodendrocyte lineage cells. Semin. Cell

Dev. Biol. 116, 45–52. https://doi.org/10.1016/j.semcdb.2020.10.013.

Kirby, L., Jin, J., Cardona, J.G., Smith, M.D., Martin, K.A., Wang, J., Strasbur-

ger, H., Herbst, L., Alexis, M., Karnell, J., et al. (2019). Oligodendrocyte precur-

sor cells present antigen and are cytotoxic targets in inflammatory demyelin-

ation. Nat. Commun. 10, 3887. https://doi.org/10.1038/s41467-019-11638-3.

van der Knaap, M.S., and Bugiani, M. (2017). Leukodystrophies: a proposed

classification system based on pathological changes and pathogenetic mech-

anisms. Acta Neuropathol. 134, 351–382. https://doi.org/10.1007/s00401-

017-1739-1.

Lau, S.-F., Cao, H., Fu, A.K.Y., and Ip, N.Y. (2020). Single-nucleus transcrip-

tome analysis reveals dysregulation of angiogenic endothelial cells and neuro-

protective glia in Alzheimer’s disease. Proc. Natl. Acad. Sci. USA 117, 25800–

25809. https://doi.org/10.1073/pnas.2008762117.

Lebrun-Julien, F., Bachmann, L., Norrmén, C., Trötzm€uller, M., Köfeler, H.,
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M.C., Wieland, F., Ishibashi, S., and Nave, K.-A. (2005). High cholesterol level

is essential for myelin membrane growth. Nat. Neurosci. 8, 468–475. https://

doi.org/10.1038/nn1426.

Sanz-Rodriguez, M., Gruart, A., Escudero-Ramirez, J., de Castro, F., Delgado-

Garcı́a, J.M., Wandosell, F., and Cubelos, B. (2018). R-Ras1 and R-ras2 are

essential for oligodendrocyte differentiation and survival for correct myelina-

tion in the central nervous system. J. Neurosci. 38, 5096–5110. https://doi.

org/10.1523/jneurosci.3364-17.2018.

Schirmer, L., Velmeshev, D., Holmqvist, S., Kaufmann, M., Werneburg, S.,

Jung, D., Vistnes, S., Stockley, J.H., Young, A., Steindel, M., et al. (2019).

Neuronal vulnerability and multilineage diversity in multiple sclerosis. Nature

573, 75–82. https://doi.org/10.1038/s41586-019-1404-z.

Shen, K., Reichelt, M., Kyauk, R.V., Ngu, H., Shen, Y.-A.A., Foreman, O., Mod-

rusan, Z., Friedman, B.A., Sheng, M., and Yuen, T.J. (2021). Multiple sclerosis

risk geneMertk is required for microglial activation and subsequent remyelina-

tion. Cell Rep. 34, 108835. https://doi.org/10.1016/j.celrep.2021.108835.
Cell Reports 40, 111189, August 23, 2022 17

https://doi.org/10.1038/s41586-018-0360-3
https://doi.org/10.1002/glia.23602
https://doi.org/10.1038/s41586-019-0903-2
https://doi.org/10.1016/j.cell.2017.05.018
https://doi.org/10.1016/j.cell.2017.05.018
https://doi.org/10.1016/j.semcdb.2020.10.013
https://doi.org/10.1038/s41467-019-11638-3
https://doi.org/10.1007/s00401-017-1739-1
https://doi.org/10.1007/s00401-017-1739-1
https://doi.org/10.1073/pnas.2008762117
https://doi.org/10.1523/jneurosci.1105-14.2014
https://doi.org/10.1016/j.neuron.2021.02.010
https://doi.org/10.1016/j.neuron.2021.02.010
https://doi.org/10.1016/j.celrep.2021.110158
https://doi.org/10.1038/nature11314
https://doi.org/10.1038/ng764
https://doi.org/10.1038/ng764
https://doi.org/10.1038/s41593-020-00764-7
https://doi.org/10.1128/mcb.24.8.3295-3306.2004
https://doi.org/10.1523/jneurosci.1373-14.2014
https://doi.org/10.1523/jneurosci.1373-14.2014
https://doi.org/10.1126/science.8430320
https://doi.org/10.1038/s41467-022-28844-1
https://doi.org/10.1016/j.ajhg.2016.07.021
https://doi.org/10.1016/j.ajhg.2016.07.021
https://doi.org/10.1016/j.devcel.2018.07.005
https://doi.org/10.1126/science.aaf6463
https://doi.org/10.1038/s41586-019-1195-2
https://doi.org/10.1038/s41586-019-1195-2
https://doi.org/10.1111/j.1750-3639.2001.tb00385.x
https://doi.org/10.1111/j.1750-3639.2001.tb00385.x
https://doi.org/10.1038/nn.3469
https://doi.org/10.1038/nn.3469
https://doi.org/10.1159/000170884
https://doi.org/10.1159/000170884
https://doi.org/10.1523/jneurosci.23-26-08989.2003
https://doi.org/10.1523/jneurosci.23-26-08989.2003
https://doi.org/10.1038/nn1426
https://doi.org/10.1038/nn1426
https://doi.org/10.1523/jneurosci.3364-17.2018
https://doi.org/10.1523/jneurosci.3364-17.2018
https://doi.org/10.1038/s41586-019-1404-z
https://doi.org/10.1016/j.celrep.2021.108835


Resource
ll

OPEN ACCESS
Simons,M., and Nave, K.-A. (2016). Oligodendrocytes: myelination and axonal

support. Cold Spring Harb. Perspect. Biol. 8, a020479. https://doi.org/10.

1101/cshperspect.a020479.

Srinivasan, K., Friedman, B.A., Etxeberria, A., Huntley, M.A., van der Brug,

M.P., Foreman, O., Paw, J.S., Modrusan, Z., Beach, T.G., Serrano, G.E.,

and Hansen, D.V. (2020). Alzheimer’s patient microglia exhibit enhanced aging

and unique transcriptional activation. Cell Rep. 31, 107843. https://doi.org/10.

1016/j.celrep.2020.107843.
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Bioanalyzer High Sensitivity DNA kit Agilent Technologies 5067–4626
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Experimental models: Organisms/strains

Prnp-MAPT*P301S (Yoshiyama et al., 2007) N/A

hMAPT-P301L mice (pR5-183) (Götz et al., 2001) M/A

PS2APP mice (Richards et al., 2003) N/A

TauPS2APP mice (Grueninger et al., 2010;

Lee et al., 2021a, 2021b)

N/A

TauPS2APP; Trem2KO mice (Lee et al., 2021a, 2021b) N/A

Mouse: C57BL-6 Charles River Hollister N/A
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smFISH oligonucleotides,

see Table S4

This paper N/A

Software and algorithms

Ingenuity Pathway Analysis Qiagen Version 01-18-06

Zen Carl Zeiss Zen 2.3 SP1

Seurat Stuart et al. (2019) Version 3.2.0

Core Dataset Integration This paper 10.5281/zenodo.6784453

Other
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Propidium iodide ThermoFisher Scientific P1304MP

l-a-lysophosphatidylcholine Sigma-Aldrich L4129

Cuprizone TCI America B0476
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Data and code availability
d Datasets have been deposited in the Gene Expression Omnibus (GEO) repository, accession numbers GEO: GSE180041 and

GEO: GSE182846.

d Original code related to core data integration has been deposited at Zenodo and is publicly available as of the date of publi-

cation. DOIs are listed in the key resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animals
All protocols involving animals were approved by Genentech’s Institutional Animal Care and Use Committee, in accordance with

guidelines that adhere to and exceed state and national ethical regulations for animal care and use in research. All mice were main-

tained in a pathogen-free animal facility under standard animal room conditions (temperature 21 ± 1�C; humidity 55%–60%; 12h

light/dark cycle). Mice of both sexes were used. The following mouse strains were used in this study:

d C57BL6 (Charles River Hollister)

d B6; C3-Tg (Prnp-MAPT*P301S) PS19Vle/J.

For GSE182846, 3–4 months old mice were treated with 1% lysolecithin (l-a-lysophosphatidylcholine, Sigma-Aldrich) as follows.

Mice were anesthetized with isoflourane, secured to a stereotactic frame and treated with Meloxicam prior to surgery. Using a drill

with a burr tip size of <0.5 mm in diameter, a small hole was drilled at the stereotaxic coordinates 1.2 mm posterior and 0.5mm lateral

relative to Bregma for unilateral injections into the right striatum. A 10mL Hamilton syringe with a pulled glass pipet containing 1%

lysolecithin (l-a-lysophosphatidylcholine, Sigma-Aldrich) solution was inserted into the drilled hole, 1.63 mm deep into the cortex

(measured from the top of the skull). The injection was slowly infused at a speed of 0.35mL/min. The incision was closed and animals

allowed to recover in a heated blanket before being returned to their cage.

For GSE180041, 9-months old mice were perfused in ice-cold PBS for preparation of single cell suspensions.

For multiplexed in situ hybridization experiments, 3–4 months old mice were perfused with ice-cold PBS, followed by dissection of

their brains.

METHOD DETAILS

Preparation of single-cell suspensions from the lysolecithin treated animals
Mice were perfused with cold PBS and the brain was submerged into cold cutting solution (high magnesium choline replacement

ACSF) pumped with oxygen on a vibratome. Using the vibratome, 150mm thick coronal sections were cut and corpus callosum lyso-

lecithin induced lesion tissue weremicro-dissected out under a dissection scope. The tissue was then dissociated with Miltenyi Neu-

ral Dissociation Kit (P) according to the manufacturer’s instructions. After being enzymatically dissociated, the cells are passed

through a cell strainer to clean up debris. Cells were then resuspended in a 23% Percoll gradient and spun at 1000 g for 20 min

to clean up myelin debris. For single-cell RNA-seq, the cell pellets were then resuspended in Hibernate-A (ThermoFisher) containing

propidium iodide and Calcein AM for the selection of live cells using flow cytometry.

Preparation of single-cell suspensions from the TauP301S animals
9-month-old non-transgenic (n = 3) or TauP301Shet (n = 6) mice were perfused with cold PBS and the hippocampi were immediately

sub-dissected. Single cell suspensions were prepared from the hippocampi as described in (Lee et al., 2021a). Briefly, hippocampi

were chopped into small pieces and dissociated with enzymemixes in Neural Tissue Dissociation Kit (P) (Miltenyi 130-092-628) in the

presence of actinomycin D. After dissociation, cells were resuspended in Hibernate A Low Fluorescencemedium (Brainbits) contain-

ing 5% FBS, with Calcein Violet AM (Thermo Fisher C34858) and propidium iodide (Thermo Fisher P1304MP). Flow cytometry was

used to sort and collect live single-cell suspensions for the single-cell RNA-seq study.

Single-cell RNA-seq library preparation and sequencing
Sample processing and library preparation was carried out using the Chromium Single Cell 30 Library and Gel Bead Kit v2 (10X Ge-

nomics) according to manufacturer’s instructions. 6000–10000 cells were used for GEM generation, and libraries were sequenced

with HiSeq 4000 (Illumina).

In situ hybridization, imaging and image analysis
For Figure 4, spatially resolved, multiplexed in situ RNA detection and analysis was performed using the automated Rebus Esper

spatial omics platform (Rebus Biosystems, Inc., Santa Clara, CA). By intersecting a list of OL lineage, DAO, microglial, astrocytic,

endothelial and neuronal candidate cell type markers generated by scRNA-seq, suitability for probe design, including gene length
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and relative abundance, and design constraints for compatibility with the Rebus Esper spatial omics platform using proprietary soft-

ware, we generated the following gene probe panel: OL Lineage markers (Olig2, Mog, Myrf), OPC markers (Pdgfra, Cspg4), COP

(Bmp4), MOL2 markers (Klk6, Hopx), MOL5/6 markers (Il33, Jph4), DAO markers (C4b, Serpina3n, Parp3, Steap3, Cdkn1a, Fosb,

Egr1, Klf4, Snhg1, Irf7, Bst2), microglia/DAM (Tmem119, Spp1, Gpnmb), astrocytes (Aqp4), Neurons (Snap25, Syt1) and endothelial

cells (Pecam1) (Table S4). Experiments using the Rebus Esper spatial platform were performed as follows. Mice were perfused with

ice-cold PBS, followed by dissection of their brains. Brains were embedded in OCT (Sakura Tissue-Tek O.C.T.), snap-frozen on dry

ice and stored at �80�C. Fresh frozen brain tissue sections (5 mm) were cut on a cryostat, mounted on the functionalized coverslips

and fixed for 10 min with 4% paraformaldehyde (Alfa Aesar, Cat#43368) in PBS at room temperature, rinsed twice with PBS at room

temperature and stored in 70% ethanol at 4�C before use. The sample section on the coverslip was assembled into a flow cell, which

was then loaded onto the instrument. The hybridization cycles and imaging were done automatically under the instrumental control

software.

Briefly, primary probes for all target genes were initially hybridized for 6 h and probes not specifically bound were washed away.

Readout probes labeled with Atto532, Atto594 and Atto647N dyes were then hybridized, washed, counterstained with DAPI and then

imaged with an Andor sCMOS camera (Zyla 4.2 Plus, Oxford Instruments) through 20xC, 0.45NA dry lens (CFI S Plan Fluor ELWD,

Nikon) with 365nm LED for DAPI and 532nm, 595nm and 647nm lasers configured for SAO imaging. Single Z-planes with 2.8mm

depth of field were acquired for each field of view. Using the Rebus Esper image processing software, the raw images were recon-

structed to generate high-resolution images (equivalent or better than images obtained with a 1003 oil immersion lens). RNA spots

were automatically detected to generate high fidelity RNA spot tables containing xy positions and signal intensities. Nuclei segmen-

tation software based on StarDist (Fazeli et al., 2020) ( identified individual cells by finding nuclear boundaries from DAPI images. The

detected RNA spots were then assigned to each cell usingmaximumdistance thresholds. The resulting cell3 featurematrix contains

gene counts per cell along with annotations for cell location and nuclear size.

QUANTIFICATION AND STATISTICAL ANALYSIS

Raw data analysis
When possible, scRNA-seq FASTQ files were downloaded from public repositories (Gene Expression Omnibus, Short Read Archive,

Synapse). In most cases, raw datasets were analyzed with an in-house pipeline. Briefly, reads were demultiplexed based on perfect

matches to the expected cell barcodes. Transcript readswere aligned to themouse reference genome (GRCm38) or the human refer-

ence genome (GRCm38) using GSNAP (Wu and Nacu, 2010). Only uniquely mapping reads were considered for downstream anal-

ysis. Transcript counts for a given gene were based on the number of unique UMIs (up to one mismatch) for reads overlapping exons

in sense orientation. Cell barcodes from empty droplets were filtered by requiring aminimum number of detected transcripts. Sample

quality was further assessed based on the distribution of per-cell statistics, such as total number of reads, percentage of reads map-

ping uniquely to the reference genome, percentage of mapped reads overlapping exons, number of detected transcripts (UMIs),

number of detected genes, and percentage of mitochondrial transcripts.

In the case of GSE157827, FASTQ files were downloaded and converted into matrices of expression counts using the cellranger

software provided by 10X Genomics. Finally, for GSE129788, GSE147528 and syn17115627, the author provided gene expression

matrices were directly used for the analysis. Mouse and human datasets included in the study are listed in Table S1.

Mouse scRNA-seq meta-analysis
A total of eight mouse datasets were analyzed spanning 5 AD models and 3 MSmodels representing datasets collected from public

repositories and in-house datasets (Table S1). Five datasets were included in the core integration analysis. Integrated atlases were

generated and analyzed using the following steps: 1) processing and filtering of each individual scRNA-seq dataset, 2) integration

along datasets to generate a single atlas 3) Transfer of labels to the remaining datasets.

Processing and filtering individual scRNA-seq datasets

For public datasets, we analyzed the raw data using the raw data processing described above. For each dataset, we filtered for

low quality cells with <200 measured genes and a high percentage of mitochondrial DNA contamination (<5%). After filtering, each

dataset was normalized to log (CPM/105), the 2000 most variable genes in each dataset identified and the expression levels of

these genes were scaled before performing PCA and clustering in the variable gene space. These steps were performed using

functions implemented in the Seurat package (NormalizeData, FindVariableFeatures, ScaleData, RunPCA, FindNeighbors,

FindClusters, RunUMAP) with some modification to default parameters as needed. OL lineage cells from each dataset were iden-

tified based on the expression of a set of markers of the OL lineage obtained from the Barres lab (Zhang et al., 2014). Cells with

high expression of these genes were then subset out of the Seurat Object to create a new OL-lineage enriched Seurat object for

each dataset.

Dataset integration for generation of mouse OL lineage atlas

Before dataset integration, we imported the aforementioned filtered OL-lineage enriched Seurat objects across multiple datasets.

Next, each dataset now containing only theOL lineage cells were normalized (function NormalizeData, method = ‘LogNormalize, sca-

le.factor = 10,000) and scaled to regress out mitochondrial genes and batch effects. For each dataset, 2500 variable genes were

computed using function (FindVariableFeatures, selection.method = ‘vst’). Pairwise integration anchors were computed between
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pairs of datasets. In the case of Cuprizone and PS2APP datasets, batch effects were observed within the dataset. Hence, for these

datasets, each batch was treated as a separate dataset during the integration process. The resulting anchorset was then used to

integrate all the cells into a single atlas. The integrated assay was then used to compute PCA, UMAP and clustering outputs.

Next, we identified the distinct cell types based on pre-existing marker genes for OL lineage subtypes as well as an independent

analysis of pseudobulk profiles obtained from the clustering output (see section on pseudo-bulk analysis of sc/snRNA-seq datasets).

Upon clustering the dataset, differential abundance statistics were calculated using EdgeR.

Pseudo-bulk analysis of sc/snRNA-seq datasets
Pseudo-bulk expression profiles were derived from single cell datasets by aggregating cells of a given sample of the same cell type

separately such that a total of sc possible pseudobulks were generated for s samples and c cell types. If a particular pseudobulk con-

tained fewer than 10 cells, these profiles were discarded such that the actual number of pseudobulks was always less than the theo-

retical maximum number of pseudobulks, sc. For each pseudobulk profile, raw counts were generated by adding the total number of

UMIs for each gene across all the cells belonging to a particular sample and cell type. This resulted in a gene-by-pseudobulk count

matrix which was normalized using the estimatedSizeFactors function from DEseq2. These normalized pseudobulk profiles were

then used for differential gene expression analysis between groups of interest and for calculation and visualization of gene set scores.

In formal notation, let nij be the raw UMI count of gene i in cell j and sj and cj be the sample and cell type, respectively of cell j. The

pseudobulks for all cells are represented by pairs ðs; cÞ where s is a sample and c is a cell type. Therefore, the pseudo-bulk count

matrix B, with rows indexed by genes and columns indexed by ðs; cÞ pairs is defined by:

Bi; sc =
X

j:ðsj ; cjÞ = ðs;cÞ
nij

Matrix B is size-factor normalized and used for downstream differential gene expression with voom.

For each mouse dataset incorporated into the study, a methodology was applied to identify DE genes that were likely artifacts due

to contamination from free RNA from other cell type compartments in the dataset as described in (Lee et al., 2021a). Briefly, to identify

DEs contributed by other cell types, the following steps were applied:

1. Within the broader single cell RNA-seq dataset, a ‘‘two-compartment’’ pseudobulk matrixCwas computed. The two compart-

ments wereOligodendrocytes (denoted here byCOL ) and a second ‘‘other’’ compartment for all of the other cell types (denoted

here by COther ). In the notation above, the two-compartment pseudobulks are the pairs (s;c) where s is a sample and c is either

the cell type of interestCOL orCOther , representing a bulk of all the other cells. Conceptually ‘‘other’’ represents the aggregate of

all of the other cells, and is a model for the source of free RNA.

2. Two voom + limma DE analysis was performed on the matrix C, using linear models � sampleID + compartment (‘‘compart-

ment model’’) and � sampleID + compartment + compartment : genotype (‘‘interaction model’’).

3. Prediction of free RNA contamination is made in two steps. In the first step, a gene is flagged as likely free RNA contamination if

the compartment term from the ‘‘compartment model’’ has adjusted P% 0.05 and the ‘‘other’’ compartment is at least 6-fold

higher than the COL compartment. The 6-fold cutoff can be tuned to other values, but was selected empirically for this study

because the compartment effect sizes were bimodal for many comparisons of interest, and this cutoff cleanly separated the

modes. Conceptually, this step involves flagging geneswhose expression is (at least 6-fold) higher in the ‘‘other’’ cell types than

in COL .

4. In the second step, the interaction term of the interaction model is examined. If this term is significant (adjusted P% 0.05) and

the direction of this effect is in the same direction as the original pseudobulk differential expression, then the gene in unflagged.

Conceptually, this stepmeans that even though there is higher expression in the ‘‘other’’ compartment, whichmight contribute

some signal to the COL compartment, the fold-change within the COL compartment is too large to explain solely by contami-

nation from the ‘‘other’’ compartment, and therefore is likely explained by true DE within the COL compartment.

5. Genes flagged as ‘‘predictedFreeRNAContam’’ in greater than 2 datasets were removed from further analysis.

Differential expression (DE) analysis from pseudobulk sample
A number of different gene sets were generated in this study: 1) Gene markers associated with resting OL subtypes (Figure S1D); 2)

Gene markers associated with disease-associated oligodendrocytes (Cluster agnostic) (Figure S3A) 3) Gene markers associated

with each disease-associated oligodendrocyte state (Figure S4A).

For the generation of the gene markers associated with resting oligodendrocyte states, we performed differential gene expression

analysis between each resting oligodendrocyte lineage cluster to the rest of the oligodendrocytes. For the generation of gene signa-

tures associated with the disease-associated oligodendrocytes, we performed differential expression analysis between a pseudo-

bulk of all disease-associated oligodendrocyte clusters and compared them to resting oligodendrocytes. Specifically, this included

the following comparison pairs: MOL5/6_DA1 and MOL5/6, MOL5/6_DA2 and MOL5/6, MOL5/6_IFN and MOL5/6, MOL2_DA1 and

MOL2, MOL2_IFN and MOL2 (Figure S2B). All differential expression analysis was performed with voom using dataset as the block-

ing variable.
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Each comparison yielded a gene set that was either uniquely differential in a particular state or differentially expressed between

multiple states, albeit at varying fold change values. For the shared genes, we categorized them as DA1, DA2 or IFN-enriched genes

if their Log-fold change was highest in one out of the three states. If the fold change of a gene was comparable between multiple

states within a 30% window of the maximum log fold change, the gene was categorized as being enriched in multiple states.

For pathway analysis, all differentially expressed genes between disease-associated states and resting states ofmature oligodendro-

cyteswere imported into Ingenuity PathwayAnalysis (IPA) software andwere subjected to IPA core expression analysis. Genes from the

integratedanalysis thatmet the cutoff values (Log2Fold change>0.6, FDR<0.05)were included in the analysis. Expr LogRatiowas used

to determine the directionality (z-scores) in the analysis. Reference set of Ingenuity Knowledge base genes were used for p value

calculations.

Gene set analysis
Gene Sets used in the Figures are as follows:

d Figures S1B and S1D: Full gene marker list in Table S1 Cell type marker genes for the resting oligodendrocyte subtypes

(selected genes chosen for visualization). See Table S2 (Column name: OL.lineage.subtypes)

d Figure S3A: Full gene marker list with FDR and Log Fold Changes in Table S2 listed as Coarse DAO activation

d Figures S4A and S4B: Full gene marker list with FDR and Log Fold Changes in Table S2, listed as Fine DAO Activation. Genes

also annotations in the columns ‘DAO_fine_up’ and ‘DAO_fine_down’ for whether each gene is classified as MOL5/6_DA1,

MOL5/6_DA2 or MOL5/6_IFN. Top 40 selected genes are shown in the heatmap and the feature plot.

d Figures 6D, 6E, and S9: Genes were generated by performing DGE between 1) hOligo2 derived from control andMS patients 2)

hOligo1 derived from control and MS patients across integrated MS datasets. Gene list and associated statistics in Table S3

under ‘Integrated MS datasets’ columns.

d Figures 7D and S10. Genes were generated by performing DGE between hOligo2 derived from high pathology and low pathol-

ogy individuals across integrated AD datasets and selecting genes that are DE with LFC >= 1.5 and FDR <= 0.05. Gene list and

associated statistics in Table S3 under ‘integrated AD meta-analysis’ columns

For a given gene set, gene set scores were calculated as follows. Gene expression values were log-transformed as

Log2(normCount+1). The average gene set score for a sample was calculated as the average over all genes in the gene set. The

average log-expression values of the controls were then subtracted out of the average of each sample to generate control-centered

gene expression values. When including both upregulated and downregulated genes, a signed average was computed by weighting

all the up genes by +1 and down genes by �1 to capture both changes in a single score.

Human scRNA-seq meta-analysis
A human disease-state oligodendrocyte atlas was constructed using snRNA-seq datasets generatedwith 10X technology for AD and

MS. A total of nine (threeMSand six AD) datasets were incorporated into the study and are listed in Table S1. Individual datasets were

processed according to the description provided in Raw Data Processing except for Leng et al., Absinta, et al. and Cain et al., where

processed countmatrices provided by the authors were used for data analysis. Each dataset was analyzed separately to identify cells

of the oligodendrocyte lineage as described before in the mouse meta-analysis. Human OL lineage cells were identified via the

expression of canonical marker genes for OL lineage except for Leng et al., and Cain et al., where the author-provided annotations

were used to subset out the clusters of oligodendrocyte lineage cells. Gene sets used to identify oligodendrocyte lineage cells were

obtained from a sorted human RNA-seq dataset generated by the Barres lab (Zhang et al., 2016)

The extracted oligodendrocyte lineage cells from each dataset were analyzed separately to identify oligodendrocyte subtypes us-

ing aforementioned methodologies to filter, normalize, scale and cluster cells. Cells with <300 measured genes and >5%mitochon-

drial counts were removed from each dataset. The resulting filtered dataset containing just the oligodendrocyte lineage cells were

normalized to log (CPM/105), the 2500 most variable genes were identified and the expression levels of these genes were scaled

before PCA. Depending on the dataset, 10–15 most significant PCs were then used for graph clustering (resolution = 0.5) and

UMAP dimensionality reduction. All steps were performed using Seurat package. Preliminary marker genes for each cluster were

identified using FindAllMarkers or FindMarker function. Individual clusters were merged into larger clusters based on a dendrogram

built on the variable gene set if no markers were able to distinguish a cluster from the rest of the dataset at an avg_LogFC >0.75.

To define resting human oligodendrocyte subtypes, cross-species integration analysis was performed with resting oligodendrocytes

derived from control individuals across both species. Human oligodendrocytes were sub-clustered into hOligo1 and hOligo2 based on

their co-clustering with MOL2 and MOL5/6. Human hOligo1 and hOligo2 markers were derived by performing a subtype-specific DE

analysis using pseudobulk profiles obtained from the clustering output of this analysis (Figure 5) and used to annotate all subsequent

human data.

For the MS datasets, we integrated the cells obtained from the three datasets into a single atlas by using an anchorset that was

derived by identification of pairwise integration anchors on the genes that are commonly variable across the datasets. The integrated

assay was used to compute PCA, UMAP and clustering outputs. Clusters were annotated using a gene set score of the markers

derived from analysis of control oligodendrocytes. The clusters recovered from the individual analysis of MS datasets and the
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integrated analysis were largely identical, except for the identification of hOligo4 which were only identified in the Schirmer et al and

Absinta et al. in the individual analysis (Figure S8C). We also found a small cluster of cells that expressed markers of both microglia

and oligodendrocytes that were ruled to be potential doublets and removed from further analysis. Another small cluster of cells ex-

pressing both oligodendrocyte and astrocyte markers were also identified in multiple datasets and removed as potential doublets.

Upon clustering the dataset, differential abundance statistics were calculated using EdgeR. The clustering outputs for cells obtained

from Jäkel et al. were also compared to the oligodendrocyte clustering annotations described by the authors in Jäkel et al. We found

that hOligo1 largely mapped to Oligo1 and Oligo5 whereas hOligo2 largely mapped to Oligo2, Oligo3, Oligo4 and Oligo6.

For the AD datasets, we integrated the cells obtained from the six datasets into a single atlas by using an anchorset that was

derived by identification of pairwise integration anchors on the genes that are commonly variable across both datasets. The inte-

grated assay was used to compute PCA, UMAP and clustering outputs. Clusters were annotated using markers of human oligoden-

drocytes derived from the analysis of resting oligodendrocytes. The clusters recovered from the individual analysis of AD datasets

and the integrated analysis were largely identical (Figure S10B).

Differential expression (DE) analysis from pseudobulk sample to obtain an MS and AD-associated oligodendrocyte
activation signature
To identify AD and MS-associated transcriptional shift in oligodendrocyte subtypes, we aggregated cells of a given subtype and the

same patient into pseudobulk profiles. For MS datasets, we created pseudobulk profiles from the cluster definitions obtained via the

integrated analysis of MS datasets. Then, using dataset as a blocked variable and controlling for age, sex and post-mortem interval

as covariates, we performed DE between MS and controls within each oligodendrocyte subtype compartment.

For AD datasets, we created pseudobulk profiles from oligodendrocyte subtypes obtained from the integrated analysis of AD data-

sets – stratifying patients into high pathology (high levels of amyloid plaques and high tau pathology) and low pathology (low to no

amyloid plaques and low tau pathology) individuals. In most cases, low pathology individuals were defined as patients who were in

Braak Stage 0, I and II and CERAD score 4 (No AD) and high pathology individuals were defined as patients in Braak Stage V and VI

and CERAD score 1 (Definite AD) and 2 (Probable AD). Subtype-specific DE between high and low pathology individuals were per-

formed using dataset as a blocking variable and controlling for age, sex, post-mortem interval as covariates. Because CERAD score

was not available for all datasets, only those patients containing information on both ceradsc and Braak Stage were included in the

DE analysis. During gene set visualization, in the datasets where CERAD score was lacking, patients were grouped into low and high

pathology groups based solely on Braak Stage.

Analysis of ISH data
The expression matrix obtained from Rebus Biosystems was filtered to remove cells with less than 5 or greater than 120 spot counts,

cells with nucleus perimeter less than 8microns and greater than 50microns. To remove doublets resulting from spot misassignment

in the spatial transcriptomics dataset, cells containing more than 2 counts of transcripts belonging to orthogonal cell types were

removed from further analysis. For example: neurons and microglia, astrocytes and microglia, microglia and oligodendrocytes, mi-

croglia and OPCs, etc. All downstream clustering analysis of the dataset was performed using Seurat setting all 31 genes as variable

features in the analysis. The resulting clusters were annotated based on expression of the markers selected for spatial transcriptom-

ics. Cells from the corpus callosumwere computationally selected using the average expression of the oligodendrocyte genemodule

(Olig2,Myrf,Mog) and neuronal gene module (Syt1 and Snap25). While Syt1 expression was largely limited to regions outside of the

corpus callosum, the oligodendrocyte gene module expression was largely limited to inside the corpus callosum. For each cell, the

expression of the two gene sets were thresholded to assign each cell as ‘Neuron’, ‘Oligodendrocytes’ or ‘Other’. For each cell, a local

neighborhood (radius = 20mm) of cells were identified. If a majority of the cells within a neighborhood of a particular cell were assigned

as ‘Oligodendrocytes’, the cell was labeled as being inside the corpus callosum. Otherwise, the cell was labeled as being outside of

the corpus callosum. This roughly demarcated the corpus callosum cells from the rest of the surrounding tissue but led to some cells

within the corpus callosum to be labeled as non-corpus callosum cells. These were manually annotated as corpus callosum cells

using the points.in.polygon function in the library sp. This led to the identification of corpus callosum cells as shown (Figure S6C)

which were used for downstream spatial analysis. To calculate the spatial proximity of cell populations to the lateral lesion site, a

straight line going through the midline of the corpus callosumwas used to scale the distance from the midline of the corpus callosum

to the left or right end (Figure S6C). This scaled distance was then used to subdivide each corpus callosum into six equidistant bins.

The proportion of cells in each bin was then calculated to determine the change in cellular proportions from varying distances from

the lesion site (Figure 4F).
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