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Abstract  
 

Fetal Alcohol Spectrum Disorders (FASD) represent the largest preventable cause 

of cognitive deficits in the western world. The mechanism(s) of how prenatal alcohol 

exposure (PAE) results in FASD remain unknown. Towards this end, mouse models of 

PAE have successfully recreated endophenotypes that are characteristic of FASD. This 

doctoral thesis examines the long-term epigenomic alterations associated with PAE. I have 

examined both mice with PAE and human patients with FASD.  

In the first set of experiments, mice with PAE and matched controls were raised to 

adulthood and then their whole brains were examined for alterations to gene expression, 

non-coding RNA (ncRNA) expression, and DNA methylation. Long-term alterations were 

observed in genes related to neurodevelopment, cellular signaling, and immune processes. 

Furthermore, there was an enrichment for alterations to genomically imprinted clusters of 

ncRNA and genes related to PTEN/PI3K/AKT/mTOR signaling. 

In the second set of experiments, buccal epithelial swabs were collected from young 

children with FASD and matched controls. Children from a discovery cohort were 

examined for alterations to DNA methylation, which revealed changes to genes involved 

in neurodevelopment and synaptic signaling as well as hippo signaling. Select candidates 

(COLEC11 and HTT) were confirmed by sodium bisulfite pyrosequencing. Examination of 

a replication cohort revealed that while similar pathways are altered, the effect is not 

identical and that sex and age may alter the methylation profile. A larger group of children, 

representative of the general population, were then analyzed using a targeted sodium 

bisulfite next-generation sequencing panel and pyrosequencing. No single gene examined 

was found to be consistently affected in all FASD children.  

Finally, the mouse and human results were compared to identify alterations to 

shared loci, ontologies, and pathways. The clustered protocadherins, which are involved in 

generating individual neuronal identity, showed increased DNA methylation in both 

species. Together, the results suggest that a shared DNA methylation profile related to 

neurodevelopment is present in both the brains of adult mice and the buccal epithelial swabs 

of young children with PAE. These results may be used in future functional studies of 

candidate loci as well as towards the development of much needed diagnostics and 

precision medicine.  
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Epigraph 
 
 
 
 
 
 
 
 
 
 

“We might use the name ‘epigenetics’ for such studies, thus emphasizing their 

relation to the concepts, so strongly favourable to the classical theory of epigenesis, which 

have been reached by the experimental embryologists. We certainly need to remember that 

between genotype and phenotype, and connecting them to each other, there lies a whole 

complex of developmental processes. It is convenient to have a name for this complex: 

‘epigenotype’ seems suitable.” 

 

- Conrad Hal Waddington (The Epigenotype. Endeavour, 1942). 
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Chapter 1 

Introduction  

1.1. Prenatal Alcohol Exposure 

Alcohol consumption during pregnancy can result in the development of fetal 

alcohol spectrum disorders (FASD) (Williams et al. 2015). FASD is an umbrella term for 

a heterogeneous spectrum of related developmental disorders that are caused by prenatal 

alcohol exposure (PAE), with the worst possible outcome being fetal alcohol syndrome 

(FAS) (Lemoine et al. 1968; Jones et al. 1973; Williams et al. 2015). FAS shares 

commonalities with other psychiatric disorders including growth deficiency and central 

nervous system impairment. FAS is distinguished from other psychiatric disorders by a 

history of maternal alcohol consumption during pregnancy and three distinct facial 

features (Clarren & Smith 1978). First is a smooth philtrum: the vertical groove between 

the nose and upper lip is flattened. Second is a thin vermilion: a thin upper lip. Third are 

small palpebral fissures: a reduced width of the eye. However, these facial characteristics 

used to distinguish FAS and partial FAS (pFAS) do not typically apply to the lower part 

of the FASD spectrum, which is characterized by neurobehavioral and neuroanatomical 

alterations without the distinctive facial features.  

There are a total of 428 comorbidities related to FASD (Popova et al. 2016). 

FASD is associated with congenital malformations to the ocular, auditory, skeletal, 

cardiac, and renal systems. The clinical heterogeneity and uniqueness of each case 

appears to be driven by the combination of dosage and timing of PAE, other exposures, 

genetic background, sex, family history of PAE, as well as maternal genotype, nutrition 

and stress (Kleiber, Diehl, et al. 2014). In Canada, from 2003-2010, ~10% of pregnant 

women and ~20% of breast feeding women consumed alcohol (Lange et al. 2016). While  

no official record exists for Canada, FASD is typically diagnosed in only 2-5% of 

children (May et al. 2014). These numbers are comparable across many alcohol 

consuming nations and represent a multi-billion dollar public health issue.  
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The Institute of Medicine (IOM) of the National Academies has four diagnostic 

categories for the disorders that constitute FASD: FAS, pFAS, alcohol-related 

neurodevelopmental disorder (ARND), and alcohol-related birth defects (ARBD) 

(Stratton et al. 1996; Chudley et al. 2005). The latest edition of the diagnostic and 

statistical manual of mental disorders (DSM–5) now includes the psychiatric diagnosis: 

Neurobehavioral Disorder Associated with Prenatal Alcohol Exposure (ND-PAE) 

(American Psychiatric Association 2013). ND-PAE considers the neurobehavioral 

alterations to be independent from the facial characteristics and is listed in the DSM–5 

appendix under “conditions for further study” (Doyle & Mattson 2015). 

Endophenotype is a psychiatric genetics concept that deconstructs a complex 

behavioural phenotype into components with a clearer genetic connection (Gottesman & 

Gould 2003). The endophenotypes of FASD overlap with other psychiatric disorders, 

particularly attention deficit hyperactivity disorder (ADHD). While an individual can be 

diagnosed with the two disorders, they are distinct disorders, and misdiagnosis of one can 

lead to inappropriate medication and therapy (O’Malley & Nanson 2002; Greenbaum et 

al. 2009; Peadon & Elliott 2010). Endophenotypes commonly associated with FASD 

include impairments in cognition, learning, executive function, judgment, attention, and 

social adaptation (Mattson & Riley 1998; Jirikowic et al. 2008; Green et al. 2014). The 

molecular mechanisms behind FASD endophenotypes have been difficult to ascertain in 

humans. However, animal models have greatly aided research into FASD 

endophenotypes (Gil-Mohapel et al. 2010; Kiecker 2016). The results suggest that FASD 

endophenotypes are a result of cellular and molecular aberrations to neurodevelopment 

that are caused by PAE (Resendiz et al. 2014).  

1.1.1. PAE Endophenotypes are Associated with Altered 
Neurodevelopment  

Human neurodevelopment is a complex process that takes a relatively long time to 

produce a mature brain. Once an oocyte is fertilized by a sperm, they form a zygote that 

undergoes the ~8-week process of embryonic development. During its voyage down the 

fallopian tube, the zygote undergoes cleavage, which is a series of rapid cell divisions that 

divide the large cytoplasm of the egg into a solid spherical mass of smaller nucleated cells 
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known as blastomeres (Gilbert 2013). The spherical structure then begins to form a cavity 

on the inside and results in a hollow ball of cells known as the blastocyst. The outer cells 

of the blastocyst form the trophoblast, which is the first embryonic epithelium, and the 

remaining cells are trapped inside and form the pluripotent inner cell mass (ICM). The 

blastocyst then arrives in the uterus after four days and implants into the endometrium of 

the uterine wall after a few more days to begin gastrulation. 

During gastrulation the embryo forms three distinct germ layers: endoderm, 

mesoderm, and ectoderm (Gilbert 2013). The endoderm forms into parts of the digestive 

system, liver, lungs, and thyroid. The mesoderm forms into a number of muscle types, 

bone, cartilage, dermis, gonads, circulatory system, and lymphatic system. The ectoderm 

forms into the surface ectoderm, neural tube, and neural crest. The surface ectoderm 

forms the epidermis, nails, hair, tooth enamel, parts of the eye, and buccal epithelium. 

The neural tube forms into the brain, spinal cord, retina, and part of the endocrine system. 

The neural crest forms into the peripheral nervous system, epinephrine-producing 

(medulla) cells in the adrenal gland, various pigment cells, and facial bone and cartilage. 

It also generates connective tissue in the eye, tooth, skin, fat, arteries as well as 

connective tissue the salivary, lachrymal, thymus, thyroid, and pituitary glands. The 

diversity of differentiated cell types has led to the neural crest being referred to as the 

fourth germ layer; however, these stem cells are in fact derived from the neural tube and 

the diverse fates are determined largely by where they migrate. In later embryonic 

development and differentiation, a strip of specialized cells in the endoderm known as the 

notchcord induces a portion of the ectoderm to become the neuroectoderm, which is also 

known as the neuroepithelium (Gilbert 2013). The neuroectoderm then transforms into 

the neural plate.  

During neurulation, the neural plate folds into the neural tube. As neurulation 

occurs, the neural plate border separates from the neuroectoderm and serves as boundary 

between the neuroectoderm and surface ectoderm. The neural plate borders, which are 

peripheral to the neural plate, then fold in on themselves and once connected are known 

as the neural crest. During this period, the neural tube may fail to close completely and 

result in neural tube defects. The closing of the neural tube is sensitive to certain 

environmental conditions with folate (Vitamin B9) and Vitamin B12 supplementation 
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greatly reducing the chances of a neural tube defect (Ray et al. 2002). In human PAE 

pregnancies, ethanol was found to impair the transfer of folate across the placenta 

(Hutson et al. 2012). Folate and B12 are involved in one-carbon metabolism, which is used 

to derive the methyl groups of the epigenome and also nucleic acid synthesis (Kobor & 

Weinberg 2011). After the neural plate closes, it becomes the neural tube. The neural 

crest cells will then migrate great distances, which leaves the neural tube disconnected 

from the epidermis. In order to migrate, neural crest cells must undergo an epithelial-

mesenchymal transition (EMT). During EMT, epithelial cells undergo morphological 

change, lose their current cell-to-cell adhesion, and become migratory multipotent 

mesenchymal stem cells. Inside the neural tube are neural stem cells that will differentiate 

into neurons and glia. Thus, in addition to the fetal stages of pregnancy, PAE can also 

alter embryonic development and produce a number of overlapping and distinct clinical 

outcomes. 

Embryonic development represents the first trimester of human pregnancy and 

results in a fetus just over 1 inch in size that continues to undergo slower cell divisions as 

it grows and refines existing structures (Gilbert 2013). The developing brain forms 

intermediate structures and refines a network of synaptic connections throughout the 

second and third trimester of pregnancy. Notably, throughout fetal development and into 

young adulthood DNA cytosine methylation in the developing brain continues to 

reconfigure itself during neurodevelopmental events (Lister et al. 2013). Any of the above 

developmental processes may be disrupted by PAE.  

A single occasion of PAE during the third trimester of pregnancy has been shown 

to trigger widespread but select acute apoptosis of neurons (Farber et al. 2010) and 

oligodendrocytes (Creeley et al. 2013) in the fetal macaque brain. Furthermore, PAE 

induced apoptosis in the fetal macaque brain is comparable to PAE induced apoptosis in 

the developing rodent brain (Young & Olney 2006).  The above observations suggest that 

PAE causes neurodevelopmental aberrations, which result in life long anomalies 

associated with FASD. The above conclusion, however, is too general and has provoked 

more refined studies on the mechanism behind the effect of PAE on neurodevelopment. 

These mechanistic studies have been greatly aided by more sensitive molecular 

technologies assessing the effect of PAE at the genomic level. Specifically, such studies 
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have focused on the effect of PAE on genome-wide gene expression and the epigenome, 

which are discussed below.  

1.1.2. PAE Alters Short-Term and Long-Term Gene Expression 

Insight into the effects of alcohol on the developing brain have been assessed 

using animal models, which typically include rats for neuroscience-based studies and the 

C57BL/6J (B6) strain of mice for molecular-biology-based studies (Valenzuela et al. 

2012; Zhou 2015). The most common in vivo PAE paradigm involves injecting acute 

doses of ethanol during different developmental time points and represents a binge 

exposure (Kleiber, Diehl, et al. 2014). Studies of PAE in mice have identified differential 

expression of diverse genes, many of which are involved in development.  

  Gene expression microarrays have been used to examine PAE in a B6 mouse 

model with binge injections (3.8 g/kg, twice a day) from gestational days (GD) six to 

eight (Lee et al. 2004). Craniofacial malformations were observed in both embryos 

(GD10) and fetuses (GD15). An alteration to “palate, lung, and nasal epithelium clone 

(plunc)”, which is involved in palate closure, was confirmed by polymerase chain 

reaction (PCR). These findings provided early evidence that PAE results in genome-wide 

alterations in both embryos and fetuses and that the altered genes are involved in 

processes related to the morphological abnormalities associated with FASD.  

Other studies have used gene expression microarrays to identify PAE induced 

alterations to genes with functions that include cellular division and proliferation, cell 

signaling, cell migration, apoptosis, cell-to-cell adhesion, metabolism, and protein 

synthesis and degradation. In 2004, Gutala et al. isolated cortical neurons from GD14 

C57BL/6J mouse fetuses and subjected them to 5 days of ethanol treatment in vivo 

(Gutala et al. 2004). They screened 638 genes and identified 56 down-regulated and 10 

up-regulated genes. Gene expression associated with “protein synthesis” (ribosome) and 

“ubiquitin-proteasome” was decreased by alcohol exposure. They also confirmed the 

genes involved in “ubiquitin-proteasome” by qPCR. Heat shock proteins and members of 

the PI3K/AKT/mTOR pathway (mTOR, Pten, and Marcks) were also altered. In 2005, 

Hard et al. examined a B6 model of binge injections on GD7 and GD9 and the fetal 

brains were examined for differential gene expression on GD18 (Hard et al. 2005). 
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Twenty-five PAE genes were identified, all of which were down-regulated. Notable 

candidates identified by the authors were Timp4, Bmp15, Rnf25, Akt1, Tulp4, and 

Dexras1. These identified genes have roles in cellular proliferation, differentiation, 

signaling, and apoptosis. In 2007, Green et al. examined two substrains of C57BL/6 mice 

and collected embryonic head folds 3 hours after binge injection on GD8 (Green et al. 

2007). The group observed alterations to 2,906 non-redundant genes, including several 

hub genes (Mapk1, Ald3a2, Cd13, Pfkm, Tnfrsf1a, Rps6, Igff1, Egfr, and Pten). There was 

a significant overall down-regulation of pathways related to the ribosome and 

proteasome. There was also a significant overall up-regulation of the pathways related to 

cell adhesion and regulation of actin cytoskeleton. Furthermore, experimentation with a 

mitochondrial GABAA receptor antagonist also uncovered a role for Akt1 and strain-

specific effects. Together, the results from Gutala et al., Green et al., and Hard et al. 

suggest that cellular signaling is altered by PAE, particularly the PI3K/AKT/mTOR 

pathway.   

In 2011, Zhou et al. examined the effects of ethanol on GD8 B6 whole embryo 

culture (Zhou, Zhao, et al. 2011). They found that 34 out of 127 (27%) alcohol treated 

embryos had neural tube defects while only 3 out 139 (2%) controls showed obvious 

defects. When comparing two array experiments, 87 probe sets were replicated. There 

were a total of 49 probe sets that had decreased expression, while 38 showed increased 

expression. The genes were functionally involved in neurodevelopment, chromatin, eye 

and heart development, retinol metabolism, cell cycle, and cell adhesion. Several genes 

were also observed to be turned on or off by alcohol exposure. The group also observed 

de novo expression of aldehyde dehydrogenase 1B1 (Aldh1B1), which catalyzes the 

conversion of retinaldehyde to retinoic acid. Retinoic acid is involved in cellular signaling 

for developmental events.  

A number of laboratories have reported on mouse models of PAE based on 

voluntary and moderate maternal consumption throughout gestation that produce peak 

blood alcohol concentrations of ~80–120 mg/dl (Allan et al. 2003; Boehm et al. 2008; 

Brady et al. 2012). Kaminen-Ahola et al. examined a B6 maternal voluntary exposure 

paradigm and found that PAE results in craniofacial changes and growth restriction 

(Kaminen-Ahola, Ahola, Flatscher-Bader, et al. 2010). It was found in this case that PAE 
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induced growth alterations were not observable prior to birth but were apparent in 

weanlings. Furthermore, they cross-fostered the weanlings to show that this observation 

was not the result of altered maternal care by alcohol consuming mothers. Gene 

expression related to the metabolism of exogenous and endogenous compounds, iron 

homeostasis, and lipid metabolism was altered in the liver of young PAE mice. In 2014, 

Dobson et al. used qPCR to examine a guinea pig model of voluntary maternal PAE and 

found it disrupts the expression of genes involved in insulin and insulin-like growth factor 

(IGF) signaling in the adult prefrontal cortex (Dobson et al. 2014). Insulin signaling is 

capable of activating the PI3K/AKT/mTOR pathway (Laplante & Sabatini 2009). In 2016 

Ramani et al. examined a moderate voluntary exposure paradigm and observed that PAE 

during the first trimester results in the upregulation of mRNA and protein for an 

astrocytic connexin (Cx30), which is involved in forming gap junctions in the 

hippocampus of young mice (Ramani et al. 2016). Together, these results show that 

rodents can be used to model a number of PAE paradigms, which include acute binge 

injections at different developmental time points or variations of a more continuous 

moderate exposure by voluntary maternal consumption.  

The laboratory of Shiva Singh established a B6 maternal continuous preference 

drinking (CPD) paradigm that resulted in offspring with mild developmental delays, 

anxiety-related traits, and deficits in learning and memory (Kleiber et al. 2011). Analysis 

by qPCR revealed a down-regulation of a glutamate receptor (Grin2c) and glycine 

receptor subunit (Glra1). This paradigm was extended by evaluating global gene 

expression changes that occurred in adult brains of CPD PAE mice (Kleiber et al. 2012). 

The results indicated that alcohol induces subtle but consistent changes to gene 

expression. Gene enrichment analysis showed overrepresented gene ontology 

classifications of cellular, embryonic, and nervous system development. A number of the 

identified genes were previously implicated in FASD-relevant neurobehavioral 

phenotypes such as cognitive function, anxiety, ADHD, and mood disorders. Ultimately, 

the above findings suggest that altered gene expression is detectable long after PAE and 

most likely represents altered gene regulation and a shift in cellular populations for life 

(Kleiber, Diehl, et al. 2014).  
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The Singh laboratory has also examined how the variability seen in FASD 

phenotypes relates to the timing of alcohol exposure. In these experiments a binge 

exposure paradigm was used, in which B6 mice were exposed to two acute doses of 

alcohol (5 g/kg of body weight) at neurodevelopmental times representing the human 

first, second, or third trimester equivalent (Kleiber et al. 2013; Mantha et al. 2014; 

Kleiber, Laufer, et al. 2014). This method has been previously reported to result in peak 

blood alcohol concentrations of over 300 mg/dl (for 4–5 hours following injection) and 

can induce the apoptosis of millions of neurons by both a blockade of NMDA glutamate 

receptors and excessive activation of GABAA receptors (Ikonomidou et al. 2007; 

Wozniak et al. 2004). The first set of experiments utilizing the binge injection models set 

out to examine physiological, developmental, and behavioural deficits associated with the 

paradigms examined (Mantha et al. 2013). The results showed that alcohol exposure at 

any time during gestation causes delays in motor skill and reflex development. Also, the 

results provided further support for long-term PAE induced deficits in learning and 

memory, as assessed by the Barnes maze. These same mice were also used to assess 

changes in the adult brain transcriptome (Kleiber et al. 2013). The results suggested that 

alcohol disrupts biological processes that are actively occurring at the time of exposure. 

These include cell proliferation during trimester one, cell migration and differentiation 

during trimester two, and cellular communication and neurotransmission during trimester 

three. Furthermore, although alcohol altered a distinct set of genes depending on 

developmental timing, many of these show interrelatedness and can be associated with 

one another via ‘hub’ molecules and pathways. However, the regulatory mechanism 

maintaining the long-term alterations to gene expression remained hypothetical.  

1.2. Epigenetic Mechanisms May Underlie the Altered Gene 
Expression of PAE 

In addition to gene expression, PAE alters epigenetic marks (Haycock 2009; 

Kobor & Weinberg 2011; Basavarajappa & Subbanna 2016). Epigenetic marks maintain 

gene expression profiles related to development and tissue specificity without altering 

DNA sequence and are heritable in dividing cells. Epigenetic marks are distinct from 

transcription factors, however, they influence each other as gene expression is initiated by 
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transcription factors recruiting RNA polymerase. Epigenetic marks include DNA cytosine 

methylation (Smith & Meissner 2013), select histone post-translational modifications 

(Gurard-Levin & Almouzni 2014), and a diverse array of non-coding RNA (ncRNA) 

species (Pauli et al. 2011; Rinn 2014). These marks enable spatial and temporal control of 

gene expression by acting together to create distinct states of variation that have unique 

functions in the brain (Sweatt et al. 2012). While each mammalian cell has a (nearly) 

identical genome, there are layers of diversity that give each cell type a unique epigenome 

that is reflective of ontogeny. Epigenetic experimentation has provided invaluable insight 

into the molecular mechanisms of inheritance and disease that lie outside genetic 

contribution. 

1.2.1. PAE Alters Histone Post-Translational Modifications 

There are five types of histone proteins found in the chromatin of mammalian 

cells: the four core histones (H2a, H2b, H3, and H4) and histone H1, which is bound to 

the linker DNA between nucleosomes (Marzluff et al. 2002). Each time a mammalian cell 

divides, it must rapidly synthesize large amounts of histones. The unique properties of the 

histone genes are critical for cell cycle regulation (Marzluff et al. 2002). There are 

approximately 10–20 genes encoding each of the core histone proteins in mammals. The 

bulk of the replication-dependent histone genes are found in two clusters in both mouse 

and human (Albig & Doenecke 1997; Albig et al. 1997). The largest cluster is termed 

HIST1, and there is an orthologous Hist1 cluster on mouse chromosome 13 (Wang et al. 

1996). The mouse Hist1 cluster contains 45 core histone genes with 6 histone H1 genes. 

A smaller number of histone genes are present in HIST2 on human chromosome 1, and 

this cluster is orthologous to the Hist2 cluster on mouse chromosome 3 (Wang et al. 

1996). In addition there is a second small cluster of histone genes on human chromosome 

1, termed HIST3, and the orthologous Hist3 cluster is located on mouse chromosome 11 

(Marzluff et al. 2002). 

A relatively large number of histone post-translational modifications (PTMs) exist 

(Gurard-Levin & Almouzni 2014) and a number of PTMs may act as epigenetic marks. 

Multiple PTMs are possible on the same histone. Mono-, di-, and tri- methylations (me1, 

me2, and me3) and acetylation (ac) are intensely studied PTMs. Histones H2A, H2B, H3, 
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and H4 represent the core nucleosome subunits. The core subunits are present in 

duplicate, where the octamer wraps around ~150 bp of DNA and interacts with the linker 

histone (H1). PTMs typically occur on the exposed N-terminus tail of the histone subunit 

that is accessible to chromatin modifying machinery. For instance, the exposed lysines 

(K) at the 4th, 9th, and 27th position in amino acid sequence on Histone H3 (H3K4, H3K9, 

and H3K27) and H4K20 are relatively well characterized for their function in regulating 

gene expression.  Histones bind to DNA and form chromatin, which also includes DNA 

methylation and some ncRNAs. PTMs are widely hypothesized to constitute a histone 

code at a specific locus that encodes gene regulatory information (Jenuwein & Allis 

2001). Ultimately, PTMs effect the recruitment of other proteins onto chromatin and can 

then functionally affect transcription.  

Histone PTMs have been shown to be altered by PAE. In 2011, Guo et al. 

examined a rat model of PAE that corresponds to the third trimester of human pregnancy. 

They found a reduction in a histone acetyltransferase (CREB binding protein) in the 

developing cerebellum along with a reduction in H3 and H4 acetylation levels (Guo et al. 

2011). In 2013, Veazey et al. examined the effect of alcohol exposure on GD12.5 B6 

cortical neuroepithelial cells maintained as neurosphere cultures (Veazey et al. 2013). The 

group found that promoters of genes involved in neurodevelopment were under-enriched 

for H3K4me3 and H3K27me3 after ethanol exposure. Notably, while the group observed 

large-scale change to chromatin structure, they only observed a few matching alterations 

to transcription. Together, the above studies demonstrate that more than one histone PTM 

is altered by PAE.  

PAE has also been shown to alter histone PTMs on genes coding for enzymes that 

establish histone PTMs. Subbanna et al. examined a human trimester 3 equivalent mouse 

model of binge PAE. They observed that PAE increased histone methyltransferase (G9a) 

activity and lead to an increase in H3K9me2 and H3K27me2 (Subbanna et al. 2013). 

Later, Subbanna et al. found increased H3K14ac in the first exon of G9a and also 

observed that G9a immunoprecipitates with DNA methylation machinery (DNMT3A and 

MeCP2) (Subbanna et al. 2014). These observations show that PAE alters cooperating 

epigenetic marks. In 2015, Veazey et al. examined in vitro and in vivo models where it 

was found that the specific alterations to histone PTMs appear to depend on alcohol 
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dosage, the specific gene, as well as the time elapsed since alcohol exposure (Veazey et 

al. 2015). Notable candidates included the Hox genes. The predicted regulatory 

correlation was not observed for individual PTMs and altered gene expression; however, 

they observed an increase in repressive chromatin modifications that was correlated with 

significant alterations to the transcripts coding for DNA and histone methyltransferase 

enzymes. Ultimately, the above studies demonstrate the combinatorial nature of the 

epigenome and show that epigenetic machinery is also deregulated by PAE. Furthermore, 

the alterations to histone PTMs may sometimes, but not always, lead to altered gene 

expression.  

1.2.2. PAE Alters Non-Coding RNA Expression  

Gene expression is not limited to coding RNA, as ncRNAs represent a variety of 

RNA species that can be altered by PAE. Small nucleolar RNAs (snoRNA) are a class of 

RNA that guide the methylation and pseudouridylation of ribosomal RNA (rRNA), 

transfer RNA (tRNA), and small nuclear RNA (snRNA) (Bachellerie et al. 2002). Also 

noteworthy are orphan snoRNAs, which have taken on novel functions in alternative 

splicing, growth, and neurodevelopment (Laufer & Singh 2012). 

Another class of ncRNA are microRNAs (miRNA) (Filipowicz et al. 2008). 

miRNAs are small (~23 bp) endogenous RNA molecules that canonically target the 3’ 

untranslated region (UTR) of messenger RNA (mRNA) and result in post-transcriptional 

repression (Bartel 2009). The targeting of a mature mammalian miRNA is dependent 

upon the seed region (six bp; nucleotides 2-7), which is where a nearly perfect match 

occurs between miRNA and mRNA. Furthermore, several nucleotides thereafter may 

tolerate some mismatches and hybridize as well. There are thousands of miRNAs in the 

mammalian genome and ~60% of protein coding genes may be regulated by miRNAs 

(Friedman et al. 2009). 

miRNAs exist in the genome as independent genes, polycistronic gene clusters, or 

introns. miRNAs are also present in the introns and/or exons of some large non-coding 

RNAs (lncRNA). miRNAs are processed from a larger pri-miRNA precursor that can 

have a 5’ cap, poly-A tail, and form a secondary structure with a hairpin loop (Filipowicz 

et al. 2008; Bartel 2009). A Drosha-DGCR8 complex, also known as the microprocessor 
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complex, processes the pri-miRNA and produces a ~70 bp stem loop known as pre-

miRNA. However, introns containing miRNAs do not undergo pri-miRNA processing as 

their splicing results in pre-miRNA. Exportin-5 recognizes pre-miRNA in the nucleus and 

exports it to the cytoplasm. Dicer recognizes the pre-miRNA, cleaves the stem loop, and 

leaves a ~20 bp RNA duplex. Afterwards, one strand (the guide strand) of the duplex is 

selected as mature RNA, while the other (passenger) strand is either degraded or is 

selected in some situations to carry out alternative targeting. Mature miRNAs are loaded 

into the RNA-induced silencing complex (RISC), which is a ribonucleoprotein complex 

that contains a number of proteins including DICER and AGO. The miRNA loaded RISC 

complex can then target transcripts, resulting in translational repression or mRNA 

destabilization. Imperfect matching at the seed region enables a single miRNA to target 

many genes and a single gene to be targeted by many miRNAs, which allows for the 

regulation of complex gene expression profiles. A number of miRNAs have been 

implicated in various abnormalities that often show co-morbidity with FASD, including 

anxiety, depression, and other psychiatric disorders (O’Connor et al. 2012).  

PAE has been shown to alter miRNA expression. In 2007, Sathayan et al. 

examined the effect of alcohol exposure on miRNA expression in GD12.5 B6 cortical 

neuroepithelial cells maintained as neurosphere cultures (Sathyan et al. 2007). The group 

found that both high and low ethanol doses alter different miRNAs that influence the cell 

cycle and apoptosis. One of the altered miRNAs was shown to be regulated by a GABA 

receptor, while another miRNA is genomically imprinted. Genomically imprinted genes 

are expressed in a parent-of-origin-specific manner that is based on differential DNA 

methylation of an imprinting control region (ICR). Thus, the ex vivo results of Sathayan et 

al. show that different PAE doses alter distinct miRNAs and that PAE responsive 

miRNAs are regulated by different mechanisms. In 2009, Wang et al. examined miRNA 

expression in fetal B6 brains exposed to a number of alcohol dosages and observed the 

deregulation of several miRNAs (Wang et al. 2009). Together the above results 

demonstrate that PAE induces altered miRNA expression.  

Studies of PAE induced miRNA expression have also revealed that the gene 

expression alterations are dynamic. In 2012, Guo et al. examined the effect of a chronic 

and intermittent exposure on B6 primary cortical neuronal cultures, and observed the 
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differential expression of 42 miRNAs after 10 days of exposure (Guo et al. 2012). The 

group also examined the effects of ethanol removal. Five days after removal of the 

chronic ethanol exposure, they observed a profile of 26 deregulated miRNAs – 20 of 

which were unique to the removal. The predicted target genes had functions related to 

transcription, protein phosphorylation, and neurodevelopment. Some of the miRNAs were 

predicted to target MeCP2, which showed both decreased mRNA and protein levels. 

These finding suggest that, in addition to the immediate effect of alcohol on the 

developing fetus, there may also be an alcohol removal effect that alters 

neurodevelopment as well.  

In addition to mice, zebrafish have proved to be a useful model for studying PAE 

induced alterations to miRNA expression. Soares et al. found that ethanol upregulates 

several miRNAs in embryos with putative targets involved in cell cycle control, 

apoptosis, and transcription (Soares et al. 2012). Tal et al. observed the reciprocal 

deregulation of miRNAs and predicted target mRNAs, which are involved in brain 

morphogenesis (Tal et al. 2012). Notably, a knockdown of mir-9 or mir-153c 

phenocopied the PAE induced alterations to larval and juvenile swimming behaviour. The 

above zebrafish experiments provide strong evidence that alterations to miRNAs can 

result in PAE endophenotypes.  

Finally, miRNAs themselves may be regulated by other epigenetic marks altered 

by PAE. In 2013, Pappalardo-Carter et al. examined the role of mir-9 and related target 

gene expression in zebrafish embryos and mouse cortical neuroepithelial cells maintained 

as neurosphere cultures (Pappalardo-Carter et al. 2013). The group observed that mir-9 

was suppressed by alcohol and that a mir-9 knockdown in the zebrafish embryos 

produced similar craniofacial defects to PAE. Furthermore, there was increased CpG 

methylation at a mir-9 locus in the mouse cell line, which suggests an association 

between alterations to DNA methylation and alterations to miRNA expression.    

1.2.3. PAE Alters DNA Methylation at Specific Genomic Loci 

One of the most examined mechanisms of the epigenome is DNA methylation: a 

highly dynamic modification that is used to store additional information on nucleotides. 

The most widely studied DNA methylation mark is 5-methylcytosine (5mC). During 
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embryonic development, there are two waves of genome-wide DNA de-methylation 

(Seisenberger et al. 2013). The first follows the fertilization of the preimplantation 

embryo, and the second is during the establishment of primordial germ cells in the 

embryo that will go on to form sperm and oocytes. The first wave of DNA de-methylation 

retains genomic imprinting, and the second resets it. After the waves of de-methylation, 

methylation is established de novo, maintained across cell division, and also locally 

modified throughout development as cells become committed to their lineage (Hemberger 

et al. 2009). DNA methyltransferases (DNMTs) are an enzyme family capable of 

establishing and maintaining DNA methylation. In vertebrates, DNMTs are involved in 

establishing methylation at CpG dinucleotides and other sequences in the genome. CpG 

islands are a regulatory feature composed of greater than 50% GC content and range from 

300 to 3000 bp (Gardiner-Garden & Frommer 1987; Fatemi et al. 2005). When 

methylated, CpG islands typically result in the repression of gene expression and are seen 

in promoters or the first exon of ~40% of mammalian genes (Fatemi et al. 2005; Brenet et 

al. 2011). Furthermore, ~70% of human gene promoters have a higher CpG content than 

is expected when compared to the rest of the genome (Saxonov et al. 2006). Intragenic, or 

gene body, CpG islands may have a role as alternative tissue-specific promoters 

(Maunakea et al. 2010). Finally, CpG islands are also mutational hotspots due to the 

tendency of 5mC to spontaneously undergo deamination and mutate to thymine. Genome-

wide scans of CpG sites have revealed that CpG island shores, rather than CpG islands, 

may be the primary sites of normal tissue-specific differentially methylated regions 

(DMRs) (Yasui et al. 2007; Irizarry et al. 2009; Doi et al. 2009). CpG island shores are 

~250 bp in size, up to 2 kb away from a CpG island, and typically outside of gene 

promoters. DMRs in CpG island shores often show a strong inverse relationship with 

gene expression. CpG island shores are associated with developmental genes and are 

conserved across mice and humans. Additionally, there are CpG island shelves that are 

located 2-4 kb from a CpG island and also the open sea, which refers to genomic regions 

that show no significant CpG enrichment (Sandoval et al. 2011). Overall, DNA 

methylation is a widely used epigenetic mark in mammals and occurs at a number of 

distinct genomic features. 
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DNA methylation is the most studied marker for PAE induced epigenomic 

dysregulation (Haycock 2009). In 1991, Garro et al. observed that binge PAE exposure in 

pregnant mice resulted in global hypomethylation of fetal DNA (Garro et al. 1991). The 

group also observed that low levels of acetaldehyde, a metabolite of ethanol, were able to 

interfere with DNA methyltransferase activity in vitro. In 1999, Maier et al. found that 

PAE can result in increased methylation and decreased expression of brain-derived 

neurotrophic factor (Bdnf) in the developing olfactory bulb of rats exposed during the 

equivalent of the first two trimesters of human pregnancy (Maier et al. 1999). Together, 

the above two studies suggested that PAE alters DNA methylation. 

In 2009 Haycock & Ramsay examined the effect of PAE on genomic imprinting 

in pre-implantation mouse embryos by examining the H19 differentially methylated 

region (DMR) (Haycock & Ramsay 2009). They observed that while PAE embryos were 

severely growth restricted, hypomethylation of the paternal allele at this specific region 

was only detectable in the placenta. Genomic imprinting is an epigenetic process that 

utilizes DNA methylation and other marks to enable parent-of-origin specific monoallelic 

expression of genes related to growth and development. Ouko et al. examined the sperm 

of alcohol-consuming adult human men and found hypomethylation at the imprinted H19 

and Dlk1-Dio3 DMRs (Ouko et al. 2009). Thus, the above studies suggest that genomic 

imprinting is deregulated by PAE.  

Later in 2009, Liu et al. examined the genome-wide effects of ethanol in a B6 

whole embryo culture (Liu et al. 2009). Gene expression arrays and methylated DNA 

immunoprecipitation (MeDIP) arrays (MeDIP-Chip) revealed that genes of promoters 

with a high CpG content had decreased methylation and increased expression from binge 

exposure with an enrichment for genes on chromosomes 7, 10, and X. A 10-fold increase 

of methylation was observed on chromosomes 10 and X in exposed embryos with neural 

tube defects when compared to those without. The alterations to methylation were seen in 

a large number of genes associated with olfaction as well as genes involved development, 

chromatin, and genomic imprinting. The altered methylation was associated with changes 

in the expression of 84 genes. This study suggests that PAE induced alterations to 

methylation are not random. The findings also demonstrate that most genes showing 
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significantly altered methylation do not show significantly altered expression when 

examined. 

A number of studies have examined the mechanism behind PAE induced 

alterations to DNA methylation. In 2010, Kaminen-Ahola et al. used the Agouti viable 

yellow (Avy) B6 mouse model, which provides a visual phenotype when methylation is 

altered at a single gene (Kaminen-Ahola, Ahola, Maga, et al. 2010). This revealed that 

voluntary maternal consumption of 10% alcohol causes hypermethylation. This study 

showed that PAE at the embryonic stage can result in a long-lasting alteration to DNA 

methylation. In 2011, Downing et al. examined methylation of the imprinted Igf2 locus in 

mouse embryos and observed a subtle ~8% decrease to methylation at a single CpG site 

with associated transcripts showing a -1.5 fold change (Downing et al. 2011). Notably, 

placing mothers on a methyl-supplemented diet attenuated some of the PAE 

endophenotypes. Later in 2011, Zhou et al. examined the effects of alcohol exposure on 

rat neural stem cell culture and found altered migration, neuron formation, and growth 

that was similar in an effect to the DNA methyltransferase inhibitor 5-aza-cytidine (Zhou, 

Balaraman, et al. 2011). During differentiation, it was found that alcohol exposure 

prevented the reprogramming of genes related to neurodevelopment, neuronal receptors, 

and olfaction. The specific sites showing altered methylation were correlated with 

transcription factors related to neurodevelopment. Overall, these studies link PAE 

induced differential DNA methylation to birth defects.  

Continuous maternal preference drinking also produces offspring with altered 

DNA methylation. In 2013, Chen et al. used immunostaining to visualize altered DNA 

methylation programming in the developing C57BL/6J mouse hippocampus (Chen et al. 

2013). In 2015, Marjonen et al. examined a voluntary maternal preference drinking model 

of PAE and found that early gestational alcohol exposure results in alterations to gene 

expression in the adolescent post-natal day (PND) 28 hippocampus, bone marrow, and 

main olfactory epithelium (Marjonen et al. 2015). The group observed gene expression 

changes related to olfaction, immune response, epigenetics (miRNAs and a histone), and 

two keratin associated proteins in the hippocampus. Genes showing differential 

expression belonged to similar families reported by Kleiber et al. in 2012, which analyzed 

some arrays generated for this thesis (Kleiber et al. 2012). Marjonen et al. also used 
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bisulfite sequencing and found alterations to DNA methylation in CpG islands upstream 

of some of the genes. Furthermore, magnetic resonance imaging (MRI) of post-natal day 

60 PAE adult mice revealed an enlargement of the left hippocampus and decreased 

volume of the left olfactory bulb. While the differential expression in the hippocampus 

was low and not possible to confirm by quantitative reverse transcription PCR (qPCR), 

some of the gene expression alterations identified by the gene expression array of the 

hippocampus were also confirmed in the bone marrow or main olfactory epithelium by 

qPCR. These observations suggest that differences present in adults with PAE are a long-

term result of earlier alterations in embryonic stem cell populations, which differentiate 

into a number of tissues and maintain some signature of developmental alterations.  

DNA methylation alterations induced by PAE are also transmitted 

transgenerationally. In 2012, Govorko et al. examined a rat model of continuous maternal 

preference drinking from GD7 to GD21. The group examined Pomc, a gene that produces 

multiple peptide hormones, and found that adult (PND60-80) F1 offspring had alterations 

in the hypothalamus, which is involved in stress reaction (Govorko et al. 2012; Sarkar 

2016). The neurons showed increased CpG methylation at the Pomc promoter, suppressed 

gene expression, and a resulting phenotype of altered stress response. Alterations to DNA 

and histone methyltransferase gene expression levels were also seen. The alterations to 

the methylation, expression, and function of Pomc were also found to be transmitted to 

both the F2 and F3 generations by the male germ-line with sperm showing alterations to 

Pomc methylation. These findings show that the DNA methylation alterations induced by 

PAE can transmit not only through mitosis but also meiosis.  

1.2.4. PAE May Alter the Epigenetic Landscape of 
Neurodevelopment  

PAE appears to alter a number of epigenetic marks in overlapping and distinct 

regions. The altered genes are enriched for functions related to cellular fate commitment 

events that occur during neurodevelopment. Thus, it appears that PAE results not only in 

immediate toxicity, but also creates distinct epigenotypes that may influence later 

developmental events. Conrad Waddington proposed the concept of the epigenotype 

(Waddington 2012), which led to his theory of canalization and the epigenetic landscape 
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(Waddington 1942; Bird 2007; Reik 2007). The epigenetic landscape is an abstract 

concept that describes the dynamic epigenomic profiles of stem cells during development. 

As cells differentiate, they become increasingly committed to certain lineages and are 

poised (or primed) at the epigenetic level for later events and certain responses 

(Waddington 1942; Lesch et al. 2013). The brain is highly dependent on the epigenome 

for neurodevelopmental processes (LaSalle et al. 2013). Developmental trajectories are 

also sensitive to the environment, where exposures may alter quality of life long after the 

initial exposure and immediate toxicology (LaSalle 2013). This effect appears to be due 

to an altered epigenetic programming related to future development that is continuing to 

exert an effect as well as a shift in vulnerable cell populations. Therefore, early life 

exposures may continue to exert an effect on adult hippocampal neurogenesis. One third 

of neurons in the hippocampus are subject to exchange over a lifetime, with annual 

turnover rate of 1.75% in the renewing fraction of adult humans that is also similar in 

mice (Spalding et al. 2013). Ultimately, the above suggests that some PAE 

endophenotypes may be maintained by long-term alterations from the initial exposure. 

Studies examining one-carbon metabolism have provided insight into how PAE 

initiates disruptions to DNA methylation, while also demonstrating the preventable nature 

of some long-term alterations. Alcohol exposure during embryonic development affects 

the transfer of folate from the mother to the developing embryo (Hutson et al. 2012). This 

is of significance to the developing embryo because folate is a methyl donor and essential 

in establishing and maintaining DNA methylation. The lack of folate has the potential to 

cause aberrant epigenetic profiles. Treatments that contain methyl donors, such as 

choline, have been able to attenuate some of the effects of PAE (Zeisel 2011). Of 

particular interest to this thesis is the observation that co-incubation of alcohol-exposed 

mouse embryos with folic acid, a synthetic form of folate, was able to prevent altered 

expression of a miRNA and  target gene (Wang et al. 2009). Such results argue that the 

alcohol-induced molecular cascade might involve DNA methylation. In 2013, Bekdash et 

al. examined the hypothalamus of adult offspring of a voluntary maternal consumption rat 

model and found a decrease in activating histone and an increase in repressive histone 

marks and DNA methylation (Bekdash et al. 2013). Furthermore, they observed increased 

methylation of the Pomc promoter and a decrease in Pomc mRNA expression. Notably, 
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these alterations could be attenuated with choline supplementation during PAE. Using the 

same model in 2014, Gangisetty et al. demonstrated a mechanistic role for MeCP2 in 

altering Pomc expression upon PAE (Gangisetty et al. 2014). Overall, these studies 

suggest that altered DNA methylation is mechanistically responsible for some PAE 

induced differential gene expression and that the prevention, or even potentially the 

reversal, of these alterations can attenuate some of the endophenotypes.  

Given the above observations, it appears that PAE can alter DNA methylation in 

specific regulatory sequences. For example, CTCF is a highly conserved ubiquitous 11-

zinc-finger protein with multiple functions in 3D chromatin organization and gene 

regulation, including chromatin insulator activity as well as transcriptional activation and 

repression (Williams & Flavell 2008). CTCF binds to a set of signal sequences that are 

sensitive to methylation (Filippova 2007) and mediates chromosomal interactions (Ling et 

al. 2006). There are over 100 000 CTCF-binding sites in the mouse genome (Shen et al. 

2012). CTCF-binding sites involved in the DMR of H19 have shown significant 

differential methylation in PAE placental tissue (Haycock & Ramsay 2009) and in the 

sperm of alcohol-consuming mice (Knezovich & Ramsay 2012). These results argue that 

the observed affect of PAE on gene expression may be caused by the effect of PAE on 

DNA methylation at specific regulatory sequences, which include imprinted regions. 

1.2.4.1. Genomic Imprinting  

 A number of studies of PAE have observed methylation changes occurring in genes 

that are known to be genomically imprinted (Liu et al. 2009; Shukla et al. 2011; Sittig et 

al. 2011; Dietz et al. 2012). Genomic imprinting enables parent-of-origin specific 

monoallelic expression of a select set of genes that are important in early development, 

particularly neurodevelopment (Kernohan & Bérubé 2010). These genes are crucial 

during not only neurodevelopment but also the normal functioning of the brain (Davies et 

al. 2008). Interestingly, ~30% of imprinted genes are hypothesized to be ncRNAs, 

including miRNAs (Morison et al. 2005). The above observations suggest that PAE is 

best explained as a sequence of events in response to ethanol that may begin with 

differential methylation of imprinted genes encoding for ncRNAs, which regulate gene 

expression. For example, moderate and voluntary maternal PAE alters adult levels of a 
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vesicular glutamate transporter in the mouse hippocampus (Zhang et al. 2015). This 

glutamate transporter showed increased mRNA levels that were correlated with decreased 

DNA methylation and increased (activating) H3K4me3 at the transporter promoter. 

However, while mRNA levels of the transporter were increased, the protein levels were 

decreased, which suggested post-transcriptional regulation. The discrepancy between 

mRNA and protein was found to be caused by the increase of an imprinted miRNA from 

the Sfmbt2 cluster and further functional experimentation showed that the miRNA binds 

to the 3’UTR of the transporter mRNA. This observation highlights the complexity of the 

interactions that shape the epigenetic landscape as well as their potential for disruption by 

PAE. Ultimately, it appears that the epigenetic landscape is one of the prime 

mechanism(s) for the long-term deregulation of brain gene expression following PAE. 

Yet the genome-wide details of this mechanism, particularly DNA methylation and 

ncRNA, have not been assessed. Also, perhaps more importantly, there remains the 

possibility that some of the epigenetic alterations observed in animal models are also 

present in children born with the clinical diagnosis of FASD. 

1.2.4.2. Systems Biology Approaches  

Given the interactive nature of the epigenetic landscape, single gene approaches do 

not capture the full complexity of alterations to the epigenome. The genome-wide 

analyses presented in this thesis make use of systems biology approaches. The genes 

identified are grouped in three ways. First, gene ontologies allow for genes to be grouped 

according to annotations of known functions and relationships across three categories: 

biological process, cellular component, and molecular function. Second, gene lists can 

also be assembled into associative genetic interaction networks, which are based on gene 

ontologies and other annotated or computationally predicted relationships. Finally, gene 

lists can be assembled into canonical protein pathways, which represent a generalized, 

linear, and well-studied cellular signaling pathway.  

Systems biology approaches can be based on the principles of independent 

component analysis (Lee & Batzoglou 2003). These approaches offer added insight to a 

series of observations from single genes with low-fold changes and borderline statistical 

significance by grouping them according to modular functions that show a significant 
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enrichment. A 1.2-fold change in many genes of a pathway could produce a biologically 

significant result that is comparable to a 20-fold increase in a single gene (Barabási & 

Oltvai 2004; Subramanian et al. 2005). Nevertheless, in a network, certain genes serve as 

hubs where they connect a large number of genes and can also allow for cross-talk 

between different cellular signaling events. An alteration to a hub can theoretically be 

more catastrophic than many similar alterations to a number of lesser connected nodes in 

the network. Overall, systems biology allows for the analysis of complex and large-scale 

alterations, which are typical of PAE.  

 

Hypothesis: Alterations to DNA methylation and ncRNA expression are associated with 

the long-term effect of prenatal alcohol exposure in (i) mice and (ii) humans with FASD. 

 

Objectives: 

1. To examine the differential epigenetic landscape associated with the long-term effects 

of PAE in adult mouse C57BL/6J brains by comparing to matched controls and 

assessing alterations in: 

a. gene expression using the Affymetrix GeneChip® Mouse Gene 1.0 ST array.  

b. miRNA expression using the Affymetrix GeneChip® miRNA 2.0 array. 

c. DNA methylation using the NimbleGen MM9 2.1M deluxe promoter array v2. 

2. To examine the association of PAE with DNA methylation in buccal swab DNA 

from children born with a diagnosis of FASD and compare to matched controls using: 

a. Illumina Infinium HumanMethylation450 BeadChips (450K) to assess 

genome-wide methylation changes. 

b. pyrosequencing confirmations of gene-specific CpG methylation differences.  

c. a targeted NGS bisulfite sequencing panel to confirm gene-specific CpG 

methylation differences. 

 

Thesis Organization: 

The results of this thesis are organized into three chapters. Chapter 2 describes an 

exploration of long-term alterations in a mouse model. Chapter 3 characterizes alterations 
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present in young human children with FASD. Chapter 4 presents a comparison of the 

alterations to DNA methylation in PAE mice and human children.  
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Chapter 2 

Exploration of Long-Term Alterations to the 

Epigenome of a PAE Mouse Model 

2.1 Overview 

This chapter examines the mechanisms initiating and maintaining the long-term 

effect of prenatal alcohol exposure (PAE) in a mouse (C57BL/6J) model of fetal alcohol 

spectrum disorder (FASD). The results presented include the long-term in vivo effects of 

PAE on brain: 1) Gene Expression, 2) microRNA (miRNA) and small nucleolar RNA 

(snoRNA) expression, and 3) DNA Cytosine Methylation. The three data sets from 

different treatment paradigms were integrated to reveal alterations to the epigenetic 

landscape of the whole brain of adult mice. The results show that PAE causes long-term 

epigenomic alterations and identify a comprehensive set of affected genes that have been 

independently implicated in endophenotypes related to Fetal Alcohol Spectrum Disorders 

(FASD). Ultimately, this chapter highlights an epigenomic hypothesis that may be 

applied towards understanding the developmental course of the effect of PAE. Most, but 

not all, of the results included in this chapter are already published in Laufer et al. 2013 

and some are published in Kleiber et al. 2012.  

2.2 Introduction 

Understanding how PAE results in the development of FASD presents a number 

of biological as well as ethical challenges. As it stands, most of the relevant experiments 

cannot be undertaken on humans. In order to address these challenges, the laboratory of 

Shiva Singh has established a C57BL/6J (B6) mouse model to examine the long-term 

effects of PAE across a number of exposure paradigms. In the binge exposure paradigms, 

mice were exposed to ethanol at specific developmental stages to model the first, second, 

or third trimester of human pregnancy (T1, T2, and T3) (Kleiber et al. 2013; Mantha et al. 

2014; Kleiber, Laufer, et al. 2014). It was found that PAE at any time during 

embryonic/fetal development results in delays to developmental milestones as well as 
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deficits in learning and memory (Mantha et al. 2013). The aforementioned mice were also 

reared to adulthood and showed differential brain gene expression in genes related to 

developmental events disrupted by PAE (Kleiber et al. 2013). The changes to expression 

were observed primarily in genes involved in cell proliferation (T1), cell differentiation 

and migration (T2), and neurotransmission and cellular communication (T3) (Kleiber, 

Diehl, et al. 2014). Thus, PAE primarily alters the expression of genes in a manner that 

depends on the developmental timing of exposure. While few of the genes were shared 

across paradigms, a much larger number are associated by gene families, ontologies, 

‘hubs’ in associative gene networks, and/or by canonical protein pathways. These results 

follow Green et al. (2007) who found changes in the expression of 2,906 genes in 

embryonic head folds 3 hours after a single binge injection on gestational day (GD) 8 

(Green et al. 2007). There was a significant down-regulation of KEGG pathways related 

to the ribosome and proteasome and also a significant up-regulation of pathways related 

to focal adhesion, adherens junction, tight junction, and regulation of actin cytoskeleton. 

They also observed that PAE altered the expression of a number of hub genes, some of 

which are involved in the PI3K/AKT/mTOR signaling pathway. Furthermore, Zhou et al. 

examined the effects of ethanol in a whole embryo culture of GD8 B6 mice and found 

changes in the expression of genes for alcohol metabolism, retinol metabolism, 

hematopoiesis, neurodevelopment, cell cycle, histones, cell adhesion, homeobox genes, 

and oncogenes (Zhou, Zhao, et al. 2011).  

Chronic and moderate exposures have been examined in a voluntary maternal 

continuous preference drinking (CPD) paradigm in B6 mice. The resulting PAE mice 

display relatively mild developmental delays, anxiety-related traits, and deficits in spatial 

learning (Kleiber et al. 2011). This treatment protocol has been previously shown by 

others to produce peak maternal blood alcohol concentrations of ~80–120 mg/dl (Allan et 

al. 2003; Boehm et al. 2008; Brady et al. 2012). The brains of adult PAE mice were also 

analyzed by gene expression arrays (Kleiber et al. 2012). Genes involved in embryonic 

and nervous system development showed subtle but consistent changes in expression. 

Furthermore, some of the genes identified have previously been associated with FASD-

relevant endophenotypes. Such genome-wide gene expression results following different 

PAE paradigms are now common in the literature and pose the next logical question: 
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What maintains changes in brain gene expression caused by PAE in B6 mice? One of the 

most logical mechanisms that may account for long-term changes in gene expression are 

ethanol induced changes to epigenetic marks. Epigenetic marks maintain gene expression 

profiles without altering DNA sequence and are heritable in dividing cells. Epigenetic 

marks are involved in gene regulation at two distinct levels. The first occurs at the level 

of transcription, which is mainly accomplished by chromatin modifications, such as DNA 

methylation and histone post-translational modifications (Métivier et al. 2008). To this 

end DNA methylation has become among the most studied of such processes because of 

the relative ease and effectiveness of analytic technology. Furthermore, the second level 

of epigenetic regulation may be achieved post-transcriptionally by miRNAs and allows 

for the fine-tuning of gene expression (Moazed 2009). miRNAs are key regulators of 

eukaryotic gene expression that act via translational repression and mRNA decay 

(Friedman et al. 2009). The two aforementioned levels of epigenetic regulation are 

particularly crucial during embryonic development, where changes to the epigenome are 

critical in ongoing differentiation (Monk et al. 1987; Howlett & Reik 1991).  

It is logical to argue that epigenetic mechanisms may provide the foundation for 

long-term alterations in gene expression and behavioral outcomes by ethanol’s direct 

effect on epigenetic features, particularly DNA methylation (Garro et al. 1991; Haycock 

2009; Kobor & Weinberg 2011). Such a hypothesis is backed by a number of independent 

and unrelated reports. For example, Liu et al. examined a whole embryonic culture of B6 

mice at early neurulation (Liu et al. 2009). They observed alterations to methylation in 

genes involved in development and chromatin organization as well as in genes regulated 

by genomic imprinting (Igf2r and Ube3a). Furthermore, Kaminen-Ahola et al. examined 

the Agouti viable yellow (Avy) B6 mouse model and found that continuous maternal 

preference drinking of 10% alcohol from GD0.5 to GD8.5 results in hypermethylation of 

the metastable epiallele, as well as postnatal craniofacial and growth defects in congenic 

PAE siblings. (Kaminen-Ahola et al. 2010). This study demonstrated that PAE during 

embryogenesis results in a long-term alteration to DNA methylation at a specific locus.  

The transcriptional alterations induced by PAE are not limited to protein-coding 

genes. Interestingly, they also include miRNA expression (Miranda 2012). Sathayan et al. 

examined the effect of alcohol exposure on miRNA expression in GD12.5 B6 
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neurosphere cultures (Sathyan et al. 2007). It was observed that high and low ethanol 

doses alter different miRNAs. The target genes were generally involved in apoptosis and 

the cell cycle. Furthermore, Wang et al. showed that PAE induces altered expression of 

mir-10a and its target gene Hoxa1 (Wang et al. 2009). Co-incubation of alcohol-exposed 

mouse embryos in folic acid, which is involved in establishing DNA methylation, 

prevented the alteration to miRNA and target mRNA. Such observations suggest that 

altered DNA methylation has the potential to directly or indirectly alter the expression of 

a specific set of miRNAs underlying PAE induced alterations to gene expression.  

Genomically imprinted genes typically utilize differential DNA methylation at an 

imprinting control region (ICR) and studies have observed PAE induced alterations to 

imprinted genes (Liu et al. 2009; Shukla et al. 2011; Sittig et al. 2011; Dietz et al. 2012). 

Approximately 30% of genomically imprinted genes are hypothesized to be ncRNAs, 

including miRNAs (Morison et al. 2005). In the placenta, PAE was shown to induce 

alterations to DNA methylation at CTCF-binding sites within the differentially 

methylated region (DMR) of the imprinted gene H19 (Haycock & Ramsay 2009). 

Genomic imprinting has been further examined in mouse embryos, where Downing et al. 

observed a ~8% decrease to methylation at a single CpG site in the imprinted Igf2 DMR 

(Downing et al. 2011). Furthermore, associated transcripts showed a -1.5 fold change in 

gene expression. These observations were also extended mechanistically by placing 

mothers on a methyl-supplemented diet, which ameliorated some of the PAE 

endophenotypes. The above and related observations in the literature suggest that PAE 

may alter DNA methylation and thus suppress transcriptional machinery by altering the 

binding sites of a number of transcription factors. Based on these observations, I 

hypothesize that large-scale alterations to the epigenome, which may be initiated by PAE, 

occur in functional sites and maintain the observed long-term alterations to gene 

expression and behaviour that underlie FASD.  

In this chapter, I present comprehensive epigenomic results from four paradigms 

of PAE. These include continuous preference drinking (CPD) by pregnant B6 mothers as 

well as injections (binge) during the B6 equivalent of the first (T1), second (T2), or third 

(T3) trimester of human pregnancy. The results are used to develop a generalized 

mechanism for alterations to gene expression and behaviour associated with PAE/FASD. 
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Specifically, the results identify long-term changes in DNA methylation, ncRNA, and 

mRNAs in the adult brain resulting from multiple PAE paradigms in B6 mice. The results 

of this chapter ultimately offer novel insights into the mechanisms maintaining FASD 

endophenotypes and may also be used towards translating rodent model research to 

human FASD studies. 

2.3 Materials & Methods 

The methodologies and workflow for the B6 mouse model are overviewed in 

Figure 2.1. The PAE paradigms utilized in this research relied on an established model 

for CPD (Kleiber et al. 2011) and three established binge injection paradigms (Mantha et 

al. 2013). The brains of the ethanol exposed and matched control animals were collected 

on post-natal day (PND) 70.   

2.3.1 Mice 

Male and female B6 mice were originally obtained from Jackson Laboratories 

(Bar Harbor, ME) and maintained at the Health Sciences Animal Care Facility at the 

University of Western Ontario (London, Ontario, Canada). The studies followed 

Canadian Council of Animal Care guidelines and approved by the Animal Use 

Subcommittee of the University of Western Ontario (Appendix K). All mice were 

housed in standard cages at 21–24°C with 40–60% humidity at a 14-hour light/10-hour 

dark cycle with access to food and water ad libitum. Virgin females of �8 weeks of age 

were time-mated and assessed for pregnancy based on the presence of vaginal plugs 

(GD0). Pregnant females were transferred to individual cages during gestation. The 

individual females were exposed to ethanol or control using different treatment paradigms 

involving binge injections or continuous preference drinking by pregnant females. The 

resulting offspring were weaned on PND21 and housed in cages with two to four same-

sex littermates. Only male offspring were used for all experimentation described in this 

research. 
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2.3.1.1 Chronic Alcohol Treatment of Pregnant Females by 

Continuous Preference Drinking (CPD) 

Female mice were placed in individual cages, where they were acclimated to 

increasing concentrations of ethanol (towards a final of 10%) diluted in water, alongside 

freely available drinking water, for 2 weeks to establish a stable drinking pattern 

previously described by Kleiber and Wright (Kleiber et al. 2011; Kleiber et al. 2012). The 

female mice were then time-mated, where they had only access to water, and once the 

male was removed the ethanol was replaced to ensure exposure from GD0 to PND10. 

Control dams had access to water only. Voluntary maternal alcohol consumption and 

water consumption were measured daily from GD0 to PND10 for each female at 10:00 

AM. Resulting pups, both alcohol-exposed and matched controls, were weaned at PND21 

and housed in same-sex colony cages of two to four mice until PND70. These mice were 

raised and assessed by Ben Laufer & Eric Diehl. 

2.3.1.2 Binge Alcohol Treatment of Pregnant Females by Acute 

Injections  

The binge exposure models used in this thesis were established by Kleiber and 

Mantha (Mantha et al. 2013; Kleiber et al. 2013). Pregnant dams were subcutaneously 

injected with two 2.5 g/kg body weight doses of ethanol in 0.15 M saline (alcohol-treated) 

spaced 2 hours apart (at 0 hours and 2 hours), or with saline alone (control), at GD8 and 

GD11 (trimester 1; T1) or GD14 and GD16 (trimester 2; T2) (Ikonomidou et al. 2007; 

Mantha et al. 2014). Control and alcohol-treated dams were age- and weight-matched. 

Given that the third trimester human equivalent occurs postnatally in mice (Dobbing & 

Sand 1979), a binge exposure during this neurodevelopmental period was modeled by 

treating pups on PND4 and PND7 via subcutaneous injection (trimester 3; T3) (Kleiber, 

Laufer, et al. 2014). In this model, pups from one litter were matched across treatment 

groups for sex and weight to control for litter effects. Injections represented two doses of 

2.5 g/kg body weight spaced 2 hours apart with matched controls receiving 0.15 M saline. 

All resulting offspring were weaned on PND21 and housed in cages with two to four 
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same-sex littermates. T1 & T2 mice were raised by Katarzyna Mantha and the T3 mice 

were raised by Morgan Kleiber.  

2.3.1.3 Tissue Collection and Nucleic Acid Isolation  

Alcohol-treated and matched control adult males (PD70) resulting from the four 

treatment paradigms (n=12 per paradigm with six alcohol-exposed and six matched 

controls) were sacrificed using CO2 and cervical dislocation. Whole brains were 

extracted, snap frozen in liquid nitrogen, and stored at −80°C until RNA and DNA 

isolation. Whole-brain total RNA was isolated from frozen tissues using TRIzol® 

Reagent (Invitrogen, Carlsbad, CA), purified using the RNeasy® Mini Kit (QIAGEN, 

Valencia, CA), and quantified using a NanoDrop ND-1000 spectrophotometer (Thermo 

Fisher Scientific Inc., Wilmington, DE). Total RNA quality was assessed using the 

Agilent 2001 Bioanalyzer (Agilent Technologies Inc., Palo Alto, CA). Further, whole 

brain DNA was isolated from the interphase layer of TRIzol using sodium citrate, 

followed by ethanol precipitation and purification using the QIAamp® DNA Micro Kit 

(QIAGEN, Valencia, CA). DNA was then quantified using a NanoDrop ND-1000 

spectrophotometer (Thermo Fisher Scientific Inc., Wilmington, DE) and all samples had 

OD260/OD280 nm ratios of 1.8–2.0 and OD260/OD230 nm ratios of 2.0–2.4.  
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Figure 2.1. Flowchart of workflow used to analyze different exposure paradigms.  
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2.3.2 RNA Analysis 

The RNA studies included in this thesis investigate both coding and non-coding 

RNAs. These studies relied on RNA isolated from the same mice and were used for 

hybridization on Affymetrix GeneChip® Mouse Gene 1.0 ST arrays and Affymetrix 

GeneChip® miRNA 2.0 arrays respectively. The RNA expression analysis primarily 

examined the CPD PAE paradigm (3 arrays with samples pooled in duplicate); however, 

the binge injection paradigms were also examined (2 arrays with samples pooled in 

triplicate). 

2.3.2.1 Gene Expression Arrays 

Affymetrix gene expression arrays are single channel arrays that have proved 

useful for the study of ethanol exposure in mice (Kerns & Miles 2008). The Affymetrix 

GeneChip® Mouse Gene 1.0 ST array (Affymetrix, Santa Clara, CA) consists of 770,317 

unique 25-mer perfect match probes that are targeted across 28,853 transcripts, with 

1,305 of those being ncRNA, and an average of 27 probes for a gene.  

The Affymetrix GeneChip® Mouse Gene 1.0 ST array was used to analyze PAE 

induced alterations to gene expression. Single-stranded complementary DNA (sscDNA) 

was prepared from 200 ng of total RNA as per the Ambion WT Expression Kit for 

Affymetrix GeneChip Whole Transcript WT Expression Arrays (Applied Biosystems, 

Carlsbad, CA) and the Affymetrix GeneChip WT Terminal Labeling kit and 

Hybridization User Manual (Affymetrix, Santa Clara, CA). Total RNA was first 

converted to complementary DNA (cDNA), followed by in vitro transcription to make 

cRNA. By subjecting the cDNA to a cRNA conversion, a biotinylated Uracil analogue is 

incorporated. The biotin molecules can then be used to attach fluorescent molecules to 

label the cRNA. Subsequently, 5.5 µg of sscDNA was synthesized, end-labeled, and 

hybridized for 16 hours at 45°C to Mouse Gene 1.0 ST arrays. GeneChip Fluidics Station 

450 performed all liquid handling steps, and GeneChips were scanned with the GeneChip 

Scanner 3000 7G using the Command Console v1.1 (Affymetrix, Santa Clara, CA). All 

hybridizations were performed at the London Regional Genomics Centre at the Robarts 

Research Institute, University of Western Ontario. Probe level (.CEL file) data were 
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generated using the Affymetrix Command Console v1.1. The .CEL files identify 

intensities of individual probes.  

Probes, which have multiple replicates and target exons, were assembled into 

probesets that represent single genes. This summarization of the .CEL files was done in 

Partek Genomics Suite v6.5 (Partek Inc., St Louis, MO) by quantile normalization using 

the RMA algorithm adjusted for GC content and log2-transformed (Irizarry et al. 2003). 

Partek software was then used to determine gene level one-way ANOVA p-values and 

fold changes. All arrays were analyzed by using a 1.2-fold cut-off with a significance 

threshold of p=0.05 to generate a list of genes of interest to be assessed further using 

bioinformatic analysis of gene ontologies and pathways. The gene expression array 

results for the T1, T2, T3, and CPD paradigms were deposited within the NCBI GEO 

database under accessions GSE34469 (T1 & T2), GSE34549 (T3) and GSE34305 (CPD, 

experiment 2). The data from CPD mice were generated by Ben Laufer, T1 & T2 mice by 

Katarzyna Mantha, and T3 mice by Morgan Kleiber.  

2.3.2.2 miRNA Expression Arrays 

The Affymetrix GeneChip® miRNA 2.0 array is based on a similar design as the 

Affymetrix GeneChip® Mouse Gene 1.0 ST array, and has probes that are 25-mer. 

However, smaller probes are used if the miRNA is less than 25 bases. The miRNA array 

targets 722 mouse mature miRNAs, 690 mouse pre-miRNA, and 2,334 small RNAs from 

humans that include snoRNAs. It also has 9 probes per a probe set for a miRNA. The 

workflow is also similar to Affymetrix GeneChip® Mouse Gene 1.0 ST arrays.  

In order to investigate the effect of PAE on miRNAs, all samples were analyzed at 

the London Regional Genomics Centre (Robarts Research Institute, London, Ontario) 

using Affymetrix miRNA 2.0 arrays. Briefly, 1 µg total RNA from each treatment 

paradigm was labeled using the Flash Tag Biotin HSR kit (Genisphere, Hatfield, PA) and 

hybridized to Affymetrix miRNA 2.0 arrays for 16 hours at 45°C. Probe level (.CEL file) 

data were generated using Affymetrix Command Console v1.1. Probes were summarized 

to gene level data in Partek Genomics Suite v6.6 (Partek Inc., St Louis, MO) by using the 

RMA algorithm (Irizarry et al. 2003). Partek software was used to determine differences 

between control and ethanol-treated samples by a one-way ANOVA and corresponding 
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P-values and fold changes. For each treatment model, the miRNAs present on this array 

were filtered using stringency criteria of 1.2-fold change (p<0.05) and subjected to a 

hierarchical clustering analysis by using Euclidean distance and average linkage to assess 

consistency in ethanol response between the arrays of different treatment paradigms. The 

miRNA expression array results for all treatment protocols were deposited within the 

NCBI Gene Expression Omnibus (GEO) database under accession GSE34413. Analyses 

of CPD mice were performed by Ben Laufer, T1 & T2 mice by Katarzyna Mantha and 

Ben Laufer, and T3 mice by Morgan Kleiber and Ben Laufer. 

2.3.2.3 Quantitative PCR Confirmation 

The quantitative polymerase chain reaction (qPCR) allows for real-time 

quantification of DNA amplification by optically measuring fluorescent dyes after laser 

excitation (Fraga et al. 2008). Taqman® is a methodology that utilizes sequence-specific 

oligonucleotide probes attached to both a fluorophore and a quencher molecule, which 

prevents fluorescence. During qPCR, the probe will hybridize to complementary DNA 

and will then be degraded by Taq polymerase, which releases the fluorophore from the 

quencher and allows it to be detected after excitation. qPCR technology can also be 

coupled with reverse transcription (RT) to enable the study of both coding and non-

coding RNA expression.  

In order to confirm gene expression results, cDNA was reverse transcribed from 

whole-brain RNA of the CPD paradigm (n=6) and matched controls (n=6). For mRNA 

expression, cDNA was created using Applied Biosystems High-Capacity cDNA Reverse 

Transcription Kit (Foster City, CA) and sequence specific TaqMan™ assays (Foster City, 

CA), which were used according to the manufacturer’s protocol. For miRNA expression, 

the Applied Biosystems TaqMan™ MicroRNA Reverse Transcription Kit (Foster City, 

CA), which uses stem-loop reverse transcription primers (Chen et al. 2005), and sequence 

specific TaqMan™ MicroRNA Assays (Foster City, CA) were used according to the 

manufacturer’s protocol. All TaqMan™ probes were selected using the Applied 

Biosystems (Carlsbad, CA) search engine to identify previously characterized TaqMan™ 

assays. GAPDH was chosen as an endogenous control for mRNA expression, while 

snoRNA 202 was chosen as an endogenous control for miRNA expression (Gao et al. 
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2010). The target and control reactions were run in separate tubes on the same plate for 

each sample as per the manufacturer’s protocol. Three technical replicates were averaged 

for both the endogenous control and gene of interest for each sample. qPCR reactions 

were performed on the Applied Biosystems StepOne™ Real-Time PCR System 2.0 

according to the manufacturer’s protocol. Fold change was calculated using the ΔΔCt 

method (Schmittgen & Livak 2008). The ΔΔCT method allows for relative quantification 

of gene expression from qPCR experimentation. CT is the threshold cycle, which is the 

PCR cycle where fluorescence exceeds a threshold value. The ΔΔCT method compares 

CT’s for an experimental gene to a reference gene across both the experimental and 

control group. The results were analyzed using Applied Biosystems DataAssist™ 

Software v3.0. Statistical significance was assessed by an unpaired Student’s t-test. 

2.3.2.4 Bioinformatic Analysis of Differentially Expressed Probe 
Sets (mRNAs and miRNAs) 

The chromosomal locations for all miRNAs were determined by using miRBase 

and Ensembl (Flicek et al. 2011; Kozomara & Griffiths-Jones 2011). Genomically 

imprinted regions were identified by the mouse imprinting catalog 

(www.mousebook.org).  

Data from the CPD paradigm were analyzed through the use of Ingenuity® 

microRNA target filter [Ingenuity® Systems (www.ingenuity.com)] to generate lists of 

interactions between genes and miRNAs of interest from the TargetScan Human database 

(mouse was not available at the time). Results were filtered based on a moderate or high 

confidence of interaction (Lewis et al. 2005; Vergoulis et al. 2012), brain specificity, and 

an inverse miRNA to target mRNA expression relationship. miRNAs were filtered based 

on a 1.15 fold change and a p<0.3 cut-off. This analysis is referred to as the original 

(2012) analysis. 

At a later date, updated (2016) annotations and improved software became 

available for the gene expression and miRNA arrays. These updates offered some 

improvement and thus were utilized for a re-analysis. Enrichr was used for biological, 

cellular, and molecular ontologies (Chen et al. 2013). Partek Pathways was used for 

canonical KEGG pathways. Gene annotations were obtained from UniProt (UniProt-
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Consortium 2014). An updated and more stringent (1.2 fold change, p<0.05) miRNA 

target filter analysis was done in Partek using Mouse TargetScan 6.2. This analysis is 

referred to as the updated (2016) analysis. 

2.3.3 DNA Analysis 

 The DNA studies included in this thesis investigate DNA cytosine methylation. 

These studies relied on DNA isolated from the same CPD mice used for RNA analysis.  

2.3.3.1 DNA Methylation (MeDIP-Chip) Arrays 

The DNA methylation analysis of the mice utilized MeDIP-Chip tiling arrays of 

promoter regions and analyzed the CPD PAE paradigm. The NimbleGen MM9 2.1M 

deluxe promoter array v2 is a two channel array that contains 2.1 million 50-75mer 

probes that utilize methylated DNA immunoprecipitation (MeDIP) and a tiling approach 

to examine DNA methylation. MeDIP involves enriching for 5mC with an antibody to 

immunoprecipitate ~500 bp fragments with the mark (Weber et al. 2005; Mohn et al. 

2009). In MeDIP-Chip, the MeDIP reaction is then coupled to a microarray chip, where 

the enriched DNA is labelled green with Cy3 and the input sample from before 

enrichment is labelled red with Cy5. The deluxe promoter array tiles approximately 8.2 

kb upstream and 3 kb downstream all 22,425 MM9 mouse gene promoters, 20 kb 

upstream of 510 mature miRNA transcripts, 16,002 CpG islands, and other biologically 

relevant sites identified from ENCODE. It also includes positive, negative, and non-CpG 

control sites. MeDIP-Chip allows for a relative level of methylated DNA enrichment to 

be analyzed by bioinformatic algorithms, which can determine differentially methylated 

regions (DMRs). However, MeDIP-Chip does not offer single nucleotide resolution, as 

the lower detection limit is 2 methylated CpG sites per a DNA fragment. Previous 

versions of this array have been used successfully in PAE rodents embryos and 

candidates were confirmed using Sequenom EpiTYPER DNA methylation analysis (Liu 

et al. 2009; Zhou, Balaraman, et al. 2011). 

In order to examine PAE-induced alterations to genome-wide DNA methylation 

by MeDIP-Chip, equal amounts of brain DNA from two non-littermate males from the 

CPD paradigm were pooled per biological replicate (n=3) to reduce potential litter effects. 
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All methylated DNA immunoprecipitation (MeDIP), sample labeling, hybridization and 

processing were performed at Arraystar Inc. (Rockville, MD). Briefly, genomic DNA was 

sonicated to 200- to 1000-bp fragments followed by immunoprecipitation of methylated 

DNA using Biomag™ magnetic beads coupled to mouse monoclonal antibody against 5-

methylcytidine (Diagenode). The DNA was eluted, whole genome amplified, and 

purified. The total input and immunoprecipitated DNA were labeled with Cy3- and Cy5-

labeled random 9-mers, respectively, and hybridized to the NimbleGen MM9 DNA 

Methylation 2.1M Deluxe array (Roche NimbleGen Inc., Madison, WI). Scanning was 

performed with the Axon GenePix 4000B microarray scanner. 

Raw data from three arrays were extracted as pair-files by NimbleScan software 

(Roche NimbleGen Inc.). Median-centering, quantile normalization, and linear smoothing 

by Bioconductor packages Ringo, limma and MEDME were performed to generate 

normalized log2-ratio data. From the normalized log2-ratio data, a sliding-window peak-

finding algorithm provided by NimbleScan v2.5 (Roche NimbleGen Inc.) was applied to 

find the enriched peaks with specified parameters (sliding window width: 750 bp; mini 

probes per peak: 2; maximum spacing between nearby probes within peak: 500 bp). The 

identified peaks were mapped to genomic features: transcripts and CpG Islands. The MA 

plots and box-plots were applied to assess the quality of raw data and effect of 

normalization. A correlation matrix was used to describe correlation among replicate 

experiments. 

To compare differentially enriched regions between ethanol-exposed (E) and 

matched control (C) mice, the log2-ratio values were averaged and then used to calculate 

the M′ value [M′=Average(log2 MeDIPE/InputE) – Average(log2 MeDIPC/InputC)] for 

each probe. The NimbleScan sliding-window peak-finding algorithm (Scacheri et al. 

2006) was run on the data to find the differential enrichment peaks (DEPs). The 

differential enrichment peaks, called by the NimbleScan algorithm, were filtered 

according to the following criteria: (i) at least one of the two groups had the median value 

of log2 MeDIP/Input ≥0.3 and a median value of M′ >0 within each peak region; (ii) at 

least half of the probes in a peak had the median value of coefficient of variability (CV) 

≤0.8 in both groups within each peak region. 
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Using an R script, a hierarchical clustering analysis was completed. The probe 

data matrix was obtained by using PeakScores from DMRs selected by DEP analysis. 

‘PeakScore’ is a measure calculated from the P-values of the probes within the peak and 

reflects the significance of the enrichment. This analysis used a ‘PeakScore’ ≥2 to define 

the DEPs by using the NimbleScan sliding-window peak-finding algorithm. The peak 

score is a –log10 transformed P-value, which is the average of the P-values for all probes 

within the peak. Therefore, a ‘PeakScore’ ≥2 means the average P-value was ≤0.01. This 

analysis is referred to as the original (2012) analysis.  

For the purpose of comparing more directly to the next chapter of this thesis an 

updated analysis of the methylation data was also later carried out using Partek Genomics 

Suite Version 6.6. While Partek had gained some capability to analyze the methylation 

array from raw scans in 2016, it was only under limited support and not fully featured. 

This analysis is referred to as the updated (2016) analysis.  

For the updated (2016) analysis, the 635 nm and 532 nm scans (.pair files) were 

analyzed in Partek Genomics Suite Version 6.6 and normalized using the default settings 

for the tiling workflow. An ANOVA was used to analyze each probe and then the model-

based analysis of tiling-arrays (MAT) algorithm (Johnson et al. 2006) was used to detect 

differentially methylated regions (DMRs). The DMRs were then annotated to genes if 

they occurred in the gene body or were 5000 bp to -3000 bp from the transcriptional start 

site. The list of genes overlapping DMRs with a MAT p-value of <0.005 was used for 

bioinformatic analysis. The software was not able to produce a proper principle 

components analysis, heatmaps, or fully present sequence annotations. Thus, the updated 

(2016) analysis is presented in addition and as complement to the original (2012) 

analysis. 

2.3.3.2 Bioinformatic Analysis of Differently Methylated Genes 

For the original (2012) analysis, the top gene promoters identified from the DNA 

methylation arrays were subjected to Ingenuity Pathway Analysis. The genes 

corresponding to all previously identified significantly affected promoters were subjected 

to an Ingenuity Core Analysis. The Ingenuity Knowledge Base (genes only) was used to 

examine direct and indirect relationships. Results were filtered to consider only molecules 
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and/or relationships specific to species (mouse, rat, or human) and tissues (nervous 

system). From the identified ‘Behavior, Neurological Disease, and Psychological 

Disorders’ network, 30 significantly differentially methylated peaks belonging to 

different regions of the promoters of hub genes were examined for CTCF-binding sites 

using the CTCFBS prediction tool (Bao et al. 2008). The genes identified as having 

CTCF-binding sites were then subjected to a pathway analysis using GeneMANIA 

(Warde-Farley et al. 2010). Gene annotations were obtained from UniProt (UniProt-

Consortium 2014). For the updated (2016) analysis, Enrichr (Chen et al. 2013) was used 

for ontologies and Partek Pathways for canonical pathways.  

2.4 Results 

2.4.1 Differential Gene (mRNA) Expression  

The first set of experiments in this chapter identified alterations to gene expression 

in CPD PAE brains at PND70 using Affymetrix GeneChip® Mouse Gene 1.0 ST arrays. 

Principle component analysis (PCA), which examines total signal from the arrays, 

correctly distinguishes CPD PAE mice from matched controls (Figure 2.2). After 

filtering, there were 783 significantly (p<0.05) altered (fold-change cut-off of 1.2) 

transcripts. A heatmap of the significant alterations distinguishes CPD from matched 

controls and illustrates that the majority of differentially expressed transcripts are up-

regulated by PAE at this level of filtering (Figure 2.3). Notably, 456 of the differentially 

expressed transcripts were ‘housekeeping’ internal control exons and introns that did not 

have available annotations. Furthermore, 31 of the differentially expressed transcripts 

were miRNAs and 116 transcripts were largely unannotated expressed sequences 

identified by consortiums, with most having no predicted protein function. The top 

differentially expressed transcripts with a gene symbol are presented in Table 2.1. The 

269 genes annotated with symbols were analyzed with Enrichr for gene ontologies and 

Partek pathways identified several altered canonical pathways (Table 2.2).  
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Figure 2.2. PCA analysis of gene expression arrays from CPD PAE (red) and matched 

control (blue) adult brains. Each point represents a single array and ellipsoids have been 

placed around groups to allow for visual clustering. 
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Figure 2.3. Heatmap of significant (p<0.05) differential (fold change cut-off 1.2) gene 

expression in CPD PAE and matched control adult brains. The expression (intensity) of 

each gene (probe set) is normalized by being standardized to a mean of 0 and a standard 

deviation of 1. Genes with no change are displayed with a value of zero (grey), 

upregulated genes have a positive value (red), and down-regulated genes have negative 

values (blue).  
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Table 2.1. Top differentially-expressed transcripts in CPD adult mouse brains that were annotated with a gene symbol. 

PAE Upregulated 
  Fold Change p-value Symbol Gene Name Gene Function 

1.9 0.002 Gm26315 Unknown Unknown 

1.8 0.027 Gm10115 Unknown Unknown 

1.6 0.022 AY512949 Unknown Unknown 

1.6 0.004 Gm16498 Unknown Unknown 

1.6 0.002 Gm22260 Unknown ncRNA 

1.6 0.010 Gm10304 Unknown Expressed in adult male diencephalon 

1.5 0.014 Gm23422 Unknown ncRNA 

1.5 0.038 Gm22951 Unknown ncRNA 

1.5 0.009 9330155M09Rik Unknown Expressed in adult male hypothalamus 

1.5 0.017 Prp2 Proline rich protein 2 Secreted Protein 

PAE Downregulated   
Fold Change p-value Symbol Gene Name Gene Function 

-1.4 0.0126 Mrpl46 39S ribosomal protein L46, mitochondrial Mitochondrial translational regulation 

-1.3 0.0386 Prg4 Proteoglycan 4 Skeletal and cartilage development 

-1.3 0.0002 Nuak1 NUAK family SNF1-like kinase 1 Cell Adhesion and DNA Damage 

-1.3 0.0377 Vmn1r-ps77 Vomeronasal 1 receptor, pseudogene 77 Pheromone receptor pseudogene  

-1.3 0.0031 Zfp518a Zinc finger protein 518A Transcriptional Regulation 

-1.3 0.0427 Ucma Unique cartilage matrix-associated protein Skeletal and cartilage development 

-1.3 0.0035 Ssna1 Sjoegren syndrome nuclear autoantigen 1 Cytoskeleton and Cell Cycle 

-1.3 0.0087 Phkg2 Phosphorylase b kinase gamma catalytic chain Neural and hormonal regulation of glycogen breakdown 

-1.3 0.0080 Cldn1 Claudin-1 Cell Adhesion 

-1.3 0.0002 Serping1 Plasma protease C1 inhibitor Complement and coagulation cascade [Immune Process]  
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Table 2.2. Ontologies and pathways for differentially-expressed genes (p<0.05, and a 

fold-change cut-off of 1.2) from CPD adult mouse brains. 

Enrichr GO Biological Processes  Overlap p-value 
Regulation of complement activation  3/27 2.6E-04 
Regulation of protein activation cascade  3/29 3.2E-04 
Dendritic spine morphogenesis  2/8 7.6E-04 
Regulation of humoral immune response  3/45 1.1E-03 
Regulation of cell communication by electrical coupling  2/10 1.1E-03 
Dendritic spine organization  2/13 1.7E-03 
Aging  5/204 1.8E-03 
Enrichr GO Cellular Location Overlap p-value 
Extracellular space  15/1120 1.7E-04 
Blood microparticle  4/161 7.3E-03 
Voltage-gated calcium channel complex  2/38 1.5E-02 
Platelet alpha granule lumen  2/48 2.3E-02 
Chloride channel complex  2/50 2.4E-02 
Outer membrane  3/137 2.8E-02 
Serine/threonine protein kinase complex  2/56 3.0E-02 
Enrichr GO Molecular Function Overlap p-value 
Solute:cation antiporter activity  2/28 6.8E-03 
Peptidase activator activity  2/37 1.1E-02 
Peptidase regulator activity  4/209 1.2E-02 
Hormone activity  3/122 1.5E-02 
Growth factor binding  3/123 1.5E-02 
Nucleotidyltransferase activity  3/140 2.1E-02 
Antiporter activity  2/62 2.9E-02 
Partek KEGG Pathways Overlap  p-value 
Complement and coagulation cascades 5/71 3.2E-03 
Purine metabolism 7/171 9.1E-03 
Taste transduction 4/59 9.5E-03 
Prion diseases 3/31 1.0E-02 
Pyrimidine metabolism 5/99 1.2E-02 
Antigen processing and presentation 4/72 1.8E-02 
Ribosome 5/133 3.6E-02 
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Prenatal ethanol induced mRNA (Pnet-ps) was the most significant (p=0.0001) 

differentially expressed (1.2 fold increase) gene in the CPD model. Pnet-ps was also 

significantly up-regulated in the T1 model (1.3 fold change, p=0.003) (Kleiber et al. 

2013). Pnet-ps is a pseudogene that appears to be a lncRNA. However, the biological 

function and genomic properties remain a mystery as there is only one report that used 

subtractive hybridization, which is a technique able to detect novel transcripts. In that 

report four transcripts were examined in the neural tube of mouse embryos 1 hour after 

ethanol treatment (Du & Hamre 2003). While three of the genes detected were previously 

annotated, one novel transcript (Pnet-ps) was detected and showed a seven-fold increase 

in expression in ethanol-treated embryos. This expression was found to be induced in 

PAE embryonic brains and also possibly present at a low level in control hearts. In this 

chapter, both the CPD and T1 models showed a subtler increase; however, the 

observation demonstrates that a transcript which shows highly increased expression 1 

hour after PAE is still altered in the same direction 70 days later in the adult brain.  

Trdn was the only protein coding gene to be altered across all exposure 

paradigms. It showed a significant (p<0.05) 1.3, -1.6, -2.2, and 1.2 fold change in the T1, 

T2, T3, and CPD paradigms respectively. Trdn is involved in the release of calcium ions 

from the sarcoplasmic reticulum, which is a key step in the contraction of cardiac and 

skeletal muscle (Roux-buisson et al. 2012). Notably, Trdn showed a significant (p<0.05) 

1.5 fold change in PND7 hippocampus from a rat model that was developmentally 

exposed to a polychlorinated biphenyl (PCB), which acts as a teratogen (Royland & 

Kodavanti 2008).  

2.4.2 Differential ncRNA Expression  

The second set of experiments in this chapter identified differences related to 

ncRNA expression by utilizing Affymetrix GeneChip® miRNA 2.0 arrays and 

Affymetrix GeneChip® Mouse Gene 1.0 ST arrays. The differential ncRNA expression is 

represented by two sets of observations. The first set of observations is of the reciprocal 

differential expression of miRNAs and target genes in CPD PAE mice at PND70. The 

second set of observations is of miRNA and snoRNA expression in multiple exposure 

paradigms at PND70. In addition to CPD, binge PAE (injection) at the first (T1), second 
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(T2) and third (T3) trimester equivalents of human development were analyzed to 

confirm and expand on the CPD results in the second set of observations. The long-term 

gene expression alterations from the binge injection models have been compared (Kleiber 

et al. 2013; Kleiber, Diehl, et al. 2014) and detailed ncRNA expression analysis is 

available for the T2 (Mantha et al. 2014) and T3 (Stringer et al. 2013; Kleiber, Laufer, et 

al. 2014) binge exposure paradigms.  

2.4.2.1 Reciprocal Differential miRNA and Target Gene 
Expression  

For the original (2012) analysis, IPA’s miRNA Target Filter® was used to 

analyze all possible miRNA and target-gene interactions from the miRNA and gene 

expression array data sets for the CPD PAE paradigm. The results were filtered based on 

the confidence of interaction, brain specificity, and an inverse miRNA to target mRNA 

relationship (Appendix A). The miRNA analysis was also updated in 2016 (Table 2.3). 

An updated (2016) target filter analysis was carried in Partek out under more stringent 

conditions using the mouse-specific TargetScan database and updated annotations for 

both arrays (Table 2.4). 

The Partek miRNA target filter revealed two mRNAs (Slitrk2 and Otx2) that had a 

reciprocal alteration with a shared miRNA (mir-130b, 1.2 fold increase) (Table 2.4). 

Slitrk2 was downregulated (–1.2), whereas one of the IPA target filter predicted miRNAs 

(mir-17*) was upregulated (Appendix A). Slitrk2 is expressed in the developing embryo 

and adult neurons, where it has an inhibitory effect on neurite outgrowth (Aruga & 

Mikoshiba 2003). Otx2 was downregulated (–1.3) along with one of its IPA target filter 

predicted miRNAs (mir-152) being upregulated (Appendix A). Otx2 is a homeobox gene 

that is involved in embryonic head development as well as in the neuroplasticity of 

GABAergic interneurons in the visual cortex and has been implicated in mood disorders 

(Acampora et al. 1995; Sabunciyan et al. 2007; Sugiyama et al. 2009). Interestingly, both 

of the above genes are involved in neurodevelopmental processes and were predicted by 

the Partek target filter to be targeted by a single miRNA.  

Aak1 (1.2 fold change, p=0.007) showed increased expression, while a number of 

miRNAs predicted to target it by both IPA and Partek being downregulated (Table 2.4 
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and Appendix A). In the T2 binge PAE model, Aak1 (1.2 fold change, p=0.027) showed 

an increase in expression and two miRNAs predicted to target it, mir-10b (-1.5 fold 

change, p=0.002) mir-342-5p (-1.3 fold change, p=0.025), showed decreased expression 

(Mantha et al. 2014; Kleiber, Diehl, et al. 2014). AAK1 is a kinase that regulates clathrin-

mediated endocytosis, which is a process that recycles synaptic vesicles at presynaptic 

terminals (Conner & Schmid 2002; Saheki & De Camilli 2012). Furthermore, AAK1 is a 

positive regulator of the Notch signaling pathway and directly interacts with an active and 

membrane-tethered form of Notch that results in part from metalloprotease cleavage by 

the ADAM gene family (Gupta-Rossi et al. 2011). Other notable candidates identified by 

the Partek miRNA target filter include Rnf165 and Nlrc5 (Table 2.4). RNF165 was 

shown to mediate motor axon extension by BMP-Smad signaling (Kelly et al. 2013). 

NLRC5 has a role in immune response, where it is a negative regulator of the NF-kappaB 

and type I interferon signaling pathways (Cui et al. 2010). Finally, both the original 

(2012) and updated (2016) analysis of altered miRNAs found that let-7 miRNA(s) were 

down-regulated (Table 2.4). Notably, let-7 miRNAs promote differentiation over 

pluripotency and are involved in neurodevelopment (Mayr et al. 2007; Worringer et al. 

2014; Ivakhnitskaia et al. 2016) 
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Table 2.3. Updated (2016) analysis of significant differentially-expressed mouse 

miRNAs in CPD adult brains (p<0.05 and 1.2-fold change cut-off). 

miRNA p-value Fold Change 

mmu-miR-466d-3p 0.023 1.6 

mmu-miR-181c 0.040 1.6 

hp_mmu-mir-686 0.020 1.3 

hp_mmu-mir-147 0.018 1.3 

hp_mmu-mir-708 0.044 1.3 

hp_mmu-mir-28 0.028 1.3 

mmu-miR-130b 0.017 1.2 

mmu-miR-322* 0.023 1.2 

hp_mmu-mir-291a 0.015 1.2 

hp_mmu-mir-146b 0.011 1.2 

mmu-miR-151-5p 0.017 1.2 

hp_mmu-mir-181b-2 0.046 1.2 

mmu-miR-291a-5p 0.037 1.2 

mmu-miR-669o 0.039 -1.2 

hp_mmu-mir-491 0.005 -1.2 

mmu-miR-27b* 0.010 -1.2 

mmu-miR-488 0.048 -1.2 

hp_mmu-mir-22 0.032 -1.3 

hp_mmu-mir-707 0.045 -1.3 

hp_mmu-mir-325 0.046 -1.3 

mmu-miR-683 0.002 -1.3 

hp_mmu-mir-193 0.016 -1.3 

mmu-let-7g 0.012 -1.3 

hp_mmu-mir-340 0.024 -1.3 

mmu-let-7f 0.041 -1.3 

hp_mmu-mir-98 0.001 -1.3 

mmu-miR-1306 0.025 -1.3 

mmu-miR-146a 0.042 -1.4 

mmu-miR-93* 0.007 -1.4 

mmu-let-7f* 0.039 -1.4 

mmu-miR-122 0.026 -1.5 

mmu-miR-150* 0.034 -1.5 

mmu-miR-369-5p 0.025 -1.7 

mmu-miR-299* 0.029 -1.8 

Note: hp = hairpin precursor and * = star 
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Table 2.4. Updated (2016) Partek miRNA target filter analysis (p<0.05 and 1.2-fold 

change cut-off) of differentially expressed genes and associated miRNAs identified in 

CPD adult brains.  

miRNA p-value Fold Change Gene  p-value Fold Change 

mmu-miR-146a 0.0424 -1.4 Trp53rka 0.0196 1.2 

mmu-miR-683 0.0022 -1.3 Aak1 0.0007 1.2 

mmu-let-7g 0.0116 -1.3 Aak1 0.0007 1.2 

mmu-let-7f 0.0410 -1.3 Aak1 0.0007 1.2 

mmu-let-7g 0.0116 -1.3 Nlrc5 0.0103 1.3 

mmu-let-7f 0.0410 -1.3 Nlrc5 0.0103 1.3 

mmu-miR-130b 0.0170 1.2 Otx2 0.0162 -1.3 

mmu-miR-683 0.0022 -1.3 Rnf165 0.0128 1.2 

mmu-let-7g 0.0116 -1.3 Rnf165 0.0128 1.2 

mmu-let-7f 0.0410 -1.3 Rnf165 0.0128 1.2 

mmu-miR-488 0.0476 -1.2 Rnf165 0.0128 1.2 

mmu-miR-130b 0.0170 1.2 Slitrk2 0.0002 -1.2 

Results were obtained from the 2016 analysis of gene and miRNA expression arrays 

respectively. 
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2.4.2.2 Confirmations of Differential Expression 

The results observed on the two independent array platforms for the CPD PAE 

mice were then examined by quantitative PCR (qPCR). Although the qPCR results 

showed similar fold changes to the arrays for all genes of interest examined (Pten, 

Nmnat1, Slitrk2 and Otx2), they were not statistically significant (p=0.122, p=0.129, 

p=0.452 and p=0.078, respectively). 

However, it is worth noting that the gene expression and miRNA arrays used were 

independent platforms that contained different probes for the same snoRNAs and 

miRNAs. The results showed that some ncRNAs are similarly affected on the two 

(miRNA and gene expression) arrays. For example, the MBII-52 snoRNA (Snord115) 

belonging to Snrpn-Ube3a is upregulated (Appendix D). 

Despite difficulties with confirming gene expression, a miRNA identified in the 

CPD model by the original (2012) IPA analysis was confirmed by qPCR. mir-679-5p, 

which is located in the Dlk1-Dio3 region, showed a 1.45-fold increase (p=0.019) in mice 

that were treated with ethanol during neurodevelopment via maternal CPD (Figure 2.4). 

The results provide support for the two independent (miRNA and gene expression) array 

platforms that showed 1.2 (p=0.03)- and 1.4 (p=0.04)-fold increases, respectively. 

Notably, this miRNA was not identified as significant in the updated (2016) miRNA 

analysis.  
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Figure 2.4. A bar graph depicting the quantitation of mmu-mir-679-5p expression in 

control and CPD PAE adult brains. This miRNA was identified in the original (2012) 

analysis. The y-axis depicts the relative mir-679 expression normalized to snoRNA 202, 

expressed as a mean ± s.e.m. of both biological (n=6) and technical (n=3) replicates. 

*p<0.05. 
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2.4.2.3 Differential ncRNA Expression in All Exposure 
Paradigms 

The original (2012) analysis of the mouse miRNA arrays shows that all PAE 

paradigms resulted in changes to global miRNA expression. The effect of each treatment 

paradigm was relatively consistent between biological replicates. Consequently, alcohol-

treated and matched control ncRNA expression patterns consistently group together when 

hierarchically clustered (Appendix B), however, they do not represent the same 

transcripts across paradigms.  

The pattern of expression between alcohol-exposed and matched control brains is 

quite distinct. Notably, the miRNAs that were affected were primarily specific to the 

developmental timing of alcohol treatment (Appendix C). Treatment during T1, T2, or 

T3 resulted in the unique expression for 21/24 (88%), 38/45 (84%) and 60/68 (88%) of 

the affected miRNAs for each of the three trimesters, respectively. This number for the 

CPD paradigm was also comparable [28/32 (88%)]. 

Finally, the altered miRNAs from the four exposure paradigms map to 

genomically imprinted regions in the mouse genome. Interestingly, 8/32 (25%) of 

identified miRNA transcripts in the CPD treatment paradigm, 2/24 (8%) in the T1 

paradigm, 13/45 (29%) in the T2 paradigm, and 13/68 (19%) in the T3 paradigm mapped 

to three known imprinted regions of the mouse genome. The genomic locations include 

the Snrpn-Ube3a region of chromosome 7 (Appendix D), the Dik1-Dio3 region of 

chromosome 12 (Appendix E), and the Sfmbt2 region of mouse chromosome 2 

(Appendix E).  

Ultimately, these results suggest that the long-term changes in ncRNA expression 

following PAE are subtle and treatment specific, with the relative exception of Snord115 

(H/MBII-52). 
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2.4.3 Differential DNA Methylation  

The third experiment in this chapter examines genome-wide as well as specific 

differences in DNA methylation in CPD PAE adult brains by utilizing NimbleGen MM9 

2.1M deluxe promoter arrays (v2). 

The original (2012) analysis revealed that the differences across individuals, 

although variable, show a significant (p<0.01) effect of PAE on genome-wide DNA 

methylation. Upon hierarchal clustering analysis, it was observed that experimental and 

control mice group together according to exposure (Figure 2.5). Furthermore, the results 

reveal significant differentially methylated regions (DMRs) in 6660 regions that are 

associated with PAE. A total of 16% of transcripts and 18% of the miRNAs that showed 

significant (p<0.05) differential expression (fold change > ±1.2) also showed significant 

(p<0.01) differential methylation in their gene promoters. Furthermore, ~50% of 

imprinted regions showed significant differences in methylation.  

Next, all the promoters identified were subjected to Ingenuity Pathway Analysis® 

(IPA®). After filtering, this analysis revealed that a large number of genes associated 

with cell death as well as nervous system development and function are significantly 

enriched (Table 2.5). An IPA associative genetic interaction network analysis revealed 

that the ‘Behavior, Neurological Disease, and Psychological Disorders’ network was the 

most significantly affected network, with an IPA® score of 65. From this network a 

number of highly connected ‘hub genes’ were identified. 

Among the most prominent hub genes was App: its promoter is less methylated in 

the treated mice. Furthermore, the promoters of a set of interacting genes (Akt1, Ghr, 

ApoE, Ntrk1) within this hub are also differentially methylated following PAE. Finally, 

IPA’s canonical pathway analysis showed that the top two pathways were Cdk5 signaling 

(p=9.01E–7), with 47/78 molecules affected (Figure 2.6), and Pten signaling (p=1.9E–

06), with 54/95 molecules affected (Figure 2.7). 
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Figure 2.5. Hierarchical clustering of significant (p<0.01) differential methylation in 

CPD PAE adult mouse brains identified by the original (2012) analysis. The heatmap was 

plotted based on the log2 ratio of probes within the peak regions of each sample. 
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Table 2.5. Top ontologies identified by the original (2012) Ingenuity analysis of 

significantly (p<0.01) differentially methylated gene promoters.  

Molecular and Cellular Functions     
Name p-value # Genes 
Cell Death 4.06E-04 - 4.97E-02  224 
Cellular Development 6.24E-04 - 4.52E-02  166 
Cellular Function and Maintenance 9.57E-04 - 4.97E-02  86 
Cellular Movement 4.12E-03 - 4.52E-02  41 
Cell Signaling 8.43E-03 - 4.97E-02  26 
Physiological System Development and Function     
Name p-value # Genes 
Nervous System Development and Function 3.86E-05 - 4.97E-02  273 
Tissue Morphology 1.64E-04 - 4.23E-02  97 
Behavior 1.62E-03 - 1.58E-02  24 
Embryonic Development 1.23E-02 - 4.23E-02  29 
Organismal Development 1.23E-03 - 4.23E-02  25 
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Figure 2.6. Ingenuity pathway analysis of the CDK5 signaling pathway. Genes identified 

by the original (2012) analysis as showing significant (p<0.01) differential methylation in 

CPD PAE mice are highlighted. The legend for symbols is in Appendix F. 
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Figure 2.7. Ingenuity pathway analysis of the PTEN signaling pathway. Genes identified by the original (2012) analysis as showing 

significant (p<0.01) differential methylation in CPD PAE mice are highlighted. The legend for symbols is in Appendix F.
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In addition to the genome-wide results, ontologies, and pathways, a functional 

examination of the results was also undertaken. The original (2012) DNA methylation 

data were integrated with the gene expression data to reveal gene families that showed 

significant differential methylation and some corresponding alterations in gene 

expression. Furthermore, an analysis of CTCF binding sites was also carried out on the 

promoter sequences of a critical gene network identified in the original (2012) analysis.  

2.4.3.1 Gene Families  

The replication-dependent histone gene clusters showed significant (p<0.01) 

increases in methylation following CPD, including Hist1h1e, Hist1h2aa, Hist1h2ak, 

Hist1h2ba, Hist1h2be, Hist1h2be, Hist2h2bb, Hist2h3b, Hist2h4, and Hist3h2ba. 

Notably, Hist1h2ab showed a significant (p=0.007) 1.2 fold decrease in expression in the 

CPD model. Finally, members of the histone gene family typically showed a similar 

decrease in expression in all binge exposure paradigms (Kleiber et al. 2013).  

Genes from the HoxA, HoxC, and HoxD clusters showed significant (p<0.01) 

decreases in methylation. The genes altered by CPD were Hoxa3, Hoxa4, Hoxa6, Hoxa7, 

Hoxa13, Hoxc8, Hoxc13, Hoxd1, Hoxd3, Hoxd8, and Hoxd11. These altered Hox genes 

have promoters with high CpG content. Hoxc8 showed a significant (p=0.01) 1.2 fold 

increase in expression in the CPD model and Hoxd10 showed a significant (p=0.04) 1.3 

fold increase in expression in the T1 model (Kleiber et al. 2013). Significant increases in 

methylation by PAE were also observed for Rhox2a, Rhox2c, Rhox2e, Rhox2h, Rhox3a, 

Rhox3h, Rhox9, Rhox10, and Rhox11. These genes have promoters with low to 

intermediate CpG content. Furthermore, Rhox1 showed a significant (p<0.02) 1.2 fold 

increase in expression in the CPD model. 

In the CPD model, significant (p<0.01) alterations to methylation in both 

directions were seen in Adam1a, Adam1b, Adam3, Adam4, Adam10, Adam12, Adam23, 

Adam30, Adam32, Adam33, Adamts8, Adamts14, Adamts15, Adamts17, Adamtsl2, 

Adamtsl5, and Adamtsl5. Adamts9 showed a significant (p<0.008) 1.2 fold increase in the 

CPD model and several miRNAs predicted to target it by IPA were significantly (p<0.05) 

down-regulated ~1.2 fold (Appendix A). In the T3 model Adamts9 showed a significant 

(p=0.00001) 1.2 fold decrease, while Adam9 showed a 1.1 fold decrease and a miRNA 
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(mir-26b) predicted to target it showed a 1.3 fold increase (Kleiber et al. 2013; Kleiber, 

Diehl, et al. 2014; Kleiber, Laufer, et al. 2014).  

The Keratin associated proteins Krtap4-13, Krtap4-16, Krtap5-1, Krtap5-4, 

Krtap8-2, Krtap10-10, Krtap26-1, and Krtap31-2 showed a significant increase in 

methylation. Krtap17-1 showed a significant decrease in methylation. Both Krtap10-10 

and Krtap31-2 showed a significant (p<0.03) 1.2 fold increase in gene expression in the 

CPD model. Promoters for these genes had low to intermediate CpG content. Krtap’s are 

clusters of genes unique to mammals that are undergoing rapid evolution and are 

expressed during the terminal differentiation of hair cells (Shimomura & Ito 2005; Wu et 

al. 2008). Twenty-eight kertain genes, of both the cytoskeletal and cuticular type, showed 

significant differential methylation that was typically an increase. Keratinocyte 

differentiation-associated protein (Krtdap) also showed a significant increase in 

methylation. Furthermore, 64 transmembrane (Tmem) family genes showed significant 

(p<0.01) altered methylation in the CPD model. Notably, in the CPD model none of the 

genes with altered methylation showed altered expression. However, Tmem19, Tmem60, 

Tmem150b, and Tmem235 showed significant (p<0.03) 1.2 fold decreases in expression 

while Tmem217 showed a significant (p<0.02) 1.2 fold increase in expression. The 

original (2012) target filter analysis also identified two miRNAs with increased 

expression that were predicted to target Tmem19 (Appendix A).  

2.4.3.2 CTCF Binding Sites  

The results included in this chapter suggest that PAE causes significant changes in 

DNA methylation in the developing brain that last to adulthood (Figure 2.5). The DMRs 

of the original (2012) analysis cover a relatively large number (6610) of gene promoters 

(6131 unique) that are related to molecular, functional, and phenotypic abnormalities 

implicated in FASD (Table 2.5). The most significant network identified by IPA (score 

65) is that of ‘Behavior, Neurological Disease, and Psychological Disorders’, which has a 

distinct set of ‘hub genes’. Among the most prominent hub genes affected is App 

(amyloid precursor protein), which is a protein that helps direct the migration of neurons 

during early development (Priller et al. 2006). These results suggest that the hub genes 

identified (Akt1, Ghr, ApoE, Ntrk1) are involved in FASD endophenotypes.  
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The results also suggest a gene regulatory mechanism underlies some FASD 

endophenotypes. The alterations in promoter methylation might interfere with 

transcriptional machinery as demonstrated by the role of differential methylation of H19 

(Hark et al. 2000). Notably, altered methylation was seen in the H19 promoter, which is 

involved in CTCF binding and imprinting (Figure 2.8A) (Lin et al. 2011). This specific 

peak has previously been identified as showing significant differential methylation in 

FASD placental tissue (Haycock & Ramsay 2009). CTCF binds to the H19/Igf2 ICR in a 

DNA-methylation-sensitive manner, where it acts as insulator activity for the 

unmethylated maternal ICR by blocking the Igf2 promoter from engaging enhancers 

downstream of H19 that are shared by H19 and Igf2 (Figure 2.8C) (Hark et al. 2000). 

The deletion or mutation of the four CTCF-binding sites within the ICR causes a 

paternalization of the maternal allele that results in biallelic Igf2 expression and H19 

repression (Engel et al. 2006). 

In addition to the H19 locus, CTCF binds to DMRs at a number of other imprinted 

loci. One of these is the secondary DMR of Gtl2 (Meg3) (Figure 2.7 and Table 2.6), 

which also relies on differential methylation at a CTCF-binding site (Nowak et al. 2011) 

and showed a significant (p<0.009) 1.2 fold decrease in expression in the T3 injection 

paradigm (Kleiber, Laufer, et al. 2014). Given the role of CTCF in imprinted regions 

implicated in FASD, other important genes that were affected were examined for CTCF 

binding sites in their promoters. From the ‘Behavior, Neurological Disease, and 

Psychological Disorders’ network, 30 significantly altered DMRs were examined for 

CTCF-binding sites using the CTCFBS prediction tool (Bao et al. 2008). Of these 30 

regions, 12 (40%) showed sequences that represented predicted CTCF-binding motifs 

(Figure 2.7). Eight of these promoter regions showed increased methylation and four 

showed decreased methylation. The results on H19 and App are similar to previous 

research (Liu et al. 2009). However, these results show that the changes are present in 

adult brain tissue long after PAE. The 12 DMRs with CTCF binding sites were then 

subjected to a pathway analysis (Figure 2.9) using GeneMANIA (Warde-Farley et al. 

2010), with the results supporting those of IPA. However, it is worth noting that other 

methylation-sensitive regulatory proteins are likely to be involved in the altered 

transcriptomics resulting from PAE.  
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Figure 2.8. The functional potential of altered CTCF-binding-site methylation after PAE in significant (p<0.01) differentially 

methylated regions identified by the original (2012) analysis. Increased (A) and decreased (B) methylation after PAE at select gene 

promoters (‘P’) with CTCF sites. (C) Schematic of H19/IGF2 imprinting regulation and the effects of PAE. The black rectangle 

represents the H19/Igf2 ICR. On the maternal allele, CTCF binds to the ICR and blocks the Igf2 promoter from accessing the 3′ shared 

enhancers (E). On the paternal allele, the ICR is methylated and H19 transcription is repressed. White lollipops represent non-

methylated DNA and black lollipops represent methylated DNA.    
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1 534 -6515 13.5
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Figure 2.9. GeneMANIA network analysis of significant (p<0.01) differentially 

methylated genes containing CTCF-binding sites from the top associative network 

identified in the original (2012) analysis by Ingenuity Pathway Analysis (“Behavior, 

Neurological Disease, and Psychological Disorders”). 
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Finally, the updated (2016) analysis identified significant (p<0.005) alterations to 

DNA methylation in 4304 gene promoters and/or CpG islands that belonged to 2898 

unique annotated genes. The top differentially methylated genes are presented in Table 

2.6. The analysis also revealed significant (p<0.002) alterations in methylation to 

Snord116 and Ipw, which are ncRNAs within Snrpn-Ube3a. A larger amount of 

significant alterations were seen in gene ontologies and canonical pathways. The updated 

ontologies and pathways indicate alterations to ion transport across the membrane, cell-

to-cell adhesion events, proliferation and differentiation (cancers) as well as 

developmental, cellular, immune, and synaptic signaling events (Tables 2.7 & 2.8). 
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Table 2.6. Updated (2016) analysis of genes in CPD adult brains with the greatest differential DNA methylation (p=0.0001). 
PAE Hypermethylated 

 
Score Symbol Gene Name Gene Function 

36 Ntm Neurotrimin Cell Adhesion and Neuron Recognition 

29 Mroh2a Maestro heat-like repeat-containing protein family member 2A Unknown 

27 Slc22a5 Solute carrier family 22 member 5 Sodium-ion dependent carnitine transporter 

27 Arhgap26 Rho GTPase-activating protein 26 Actin cytoskeleton and nervous system development 

25 Bcl11b B-cell lymphoma/leukemia 11B Tumor-suppressor  

24 Syn3 Synapsin-3 Neurotransmission and synaptogenesis 

20 Foxp4 Forkhead box protein P4 Transcriptional repressor 

18 Pisd-ps Phosphatidylserine decarboxylase, pseudogene Unknown pseudogene 

17 Gnas Guanine nucleotide-binding protein G(s) Alpha Subunit GPCR signal transduction [Imprinted Gene] 

17 Meg3 Maternally expressed 3 [Also known as Gtl2] lncRNA [Imprinted: Dlk1-Dio3] 
PAE Hypomethylated 

 
Score Symbol Gene Name Gene Function 

-14 Xiap X-linked inhibitor of apoptosis E3 ubiquitin protein ligase [Regulated by Akt] 

-10 Map2k1 Dual specificity mitogen-activated protein kinase kinase 1 MAPK signal transduction  

-10 Pmfbp1 Polyamine-modulated factor 1-binding protein 1 Organization of cytoskeleton  

-9 Clcn5 H(+)/Cl(-) exchange transporter 5 Proton-coupled chloride transporter 

-9 Mir188 MicroRNA 188 Post-transcriptional regulation 

-9 Mir532 MicroRNA 523 Post-transcriptional regulation 

-9 Eif3e Eukaryotic translation initiation factor 3 subunit E Translational regulation 

-9 Izumo4 Izumo sperm-egg fusion protein 4 Reproduction [immunoglobulin superfamily protein] 

-9 Mob3a MOB kinase activator 3A Metal ion binding 

-9 Gldc Glycine dehydrogenase (decarboxylating), mitochondrial Glycine degradation 
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Table 2.7. Ontologies for the updated (2016) analysis of significant (p<0.005) differential 

DNA methylation in CPD mice.   

Enrichr GO Biological Processes  Overlap p-value 
Calcium ion transmembrane transport  33/128 1.9E-04 
Inorganic cation transmembrane transport  82/440 2.5E-04 
Response to steroid hormone  71/369 2.9E-04 
Response to mechanical stimulus  40/176 4.1E-04 
Divalent inorganic cation transport  50/238 4.2E-04 
Gland development  47/220 4.5E-04 
Divalent metal ion transport  49/234 5.0E-04 
Cellular response to lipid  61/315 6.6E-04 
Epithelial cell development  27/107 9.2E-04 
Regulation of ion transmembrane transport  60/314 9.7E-04 
Enrichr GO Cellular Location Overlap p-value 
Cell-cell junction  65/335 3.6E-04 
Postsynaptic membrane  42/195 6.7E-04 
Synaptic membrane  46/228 1.3E-03 
Cell cortex  22/83 1.4E-03 
Integral component of plasma membrane  162/1066 2.1E-03 
Contractile fiber part  35/167 2.7E-03 
Lamellipodium  25/111 4.7E-03 
Centrosome  62/360 5.7E-03 
Perinuclear region of cytoplasm  69/411 6.2E-03 
Golgi membrane  54/308 7.0E-03 
Enrichr GO Molecular Function Overlap p-value 
Channel activity  85/427 3.9E-05 
Passive transmembrane transporter activity  85/427 3.9E-05 
Metal ion transmembrane transporter activity  78/400 1.4E-04 
Substrate-specific channel activity  79/406 1.4E-04 
Inorganic cation transmembrane transporter activity  92/497 1.9E-04 
Divalent inorganic cation transmembrane transporter activity  39/154 9.0E-05 
Calcium ion transmembrane transporter activity  34/127 1.0E-04 
Ion channel activity  76/396 2.7E-04 
Cation channel activity  58/285 4.0E-04 
Calcium channel activity  28/108 6.2E-04 
Gated channel activity  60/323 2.2E-03 
RNA polymerase II regulatory region DNA binding  55/288 2.0E-03 
SH3 domain binding  28/119 2.1E-03 
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Table 2.8. Pathways for the updated (2016) analysis of significant (p<0.005) differential 

DNA methylation in CPD mice.   

Partek KEGG Pathways Overlap  p-value 
Pathways in cancer 94/234 6.2E-05 
Focal adhesion 60/148 1.1E-03 
Arrhythmogenic right ventricular cardiomyopathy  26/48 1.5E-03 
Melanogenesis 31/70 6.2E-03 
Prostate cancer 28/61 6.2E-03 
ECM-receptor interaction 27/60 8.7E-03 
Renin-angiotensin system 9/11 9.5E-03 
Acute myeloid leukemia 19/38 1.2E-02 
Calcium signaling pathway 50/136 1.2E-02 
TNF signaling pathway 32/78 1.3E-02 
Phosphatidylinositol signaling system 25/57 1.4E-02 
Glycosphingolipid biosynthesis - globo series 7/8 1.7E-02 
Basal cell carcinoma 18/38 2.0E-02 
Colorectal cancer 20/44 2.0E-02 
HTLV-I infection 69/208 2.2E-02 
Regulation of actin cytoskeleton 55/160 2.3E-02 
Proteoglycans in cancer 57/167 2.3E-02 
Protein digestion and absorption 26/64 2.5E-02 
Dilated cardiomyopathy 26/64 2.5E-02 
Fc gamma R-mediated phagocytosis 25/61 2.6E-02 
Amphetamine addiction 20/47 3.3E-02 
Estrogen signaling pathway 27/70 3.6E-02 
Adherens junction 22/54 3.7E-02 
Endometrial cancer 16/36 4.1E-02 
Vasopressin-regulated water reabsorption 14/30 4.1E-02 
Hippo signaling pathway 40/115 4.2E-02 
Bacterial invasion of epithelial cells 22/55 4.2E-02 
Wnt signaling pathway 37/105 4.3E-02 
Pertussis 21/52 4.3E-02 
Prolactin signaling pathway 21/53 5.0E-02 
Osteoclast differentiation 33/93 5.0E-02 
Neurotrophin signaling pathway 32/90 5.2E-02 
Renal cell carcinoma 19/47 5.3E-02 
FoxO signaling pathway 35/101 5.6E-02 
Hedgehog signaling pathway 15/35 5.8E-02 
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2.5 Discussion 

The experimentation in this chapter has resulted in a number of observations 

based on three key experiments (Figure 2.1). The first set of experiments are related to 

gene (mRNA) expression. PAE, an early life exposure, was associated with long-term 

alterations to the adult brain (Figures 2.2 & 2.3 and Table 2.1). Overall, the top up-

regulated genes were primarily uncharacterized while the top down-regulated reflected a 

variety of functions (Table 2.1). The genes with long-term alterations share ontologies 

and pathways related to immune processes, synaptic events, nucleotide metabolism, 

protein synthesis, ion transport, and the cell membrane (Table 2.2). The observation of 

such long-term alterations to gene expression in adult PAE mice raises two questions. The 

first question is are they contributing to FASD related behaviours? The results suggest the 

possibility that some alterations may be playing an active role, but require gene specific 

functional confirmation. The second question is what is initiating and maintaining the 

long-term alterations gene expression? To this end, the next two experiments of this 

chapter tested the hypothesis that miRNAs and DNA methylation are involved in 

maintaining the long-term alterations and may contain a footprint that is informative of 

the events initiating these alterations.  

In the second set of experiments different ncRNA species were examined. First, 

the CPD PAE model was examined for reciprocal alterations to the expression of 

miRNAs and predicted target genes (Table 2.4). These results revealed several 

interactions and aided in the identification of candidate biomarkers by providing 

additional layers of support for their deregulation (Figure 2.4). Second, alterations to 

ncRNA in the CPD paradigm, which represents moderate exposure were compared to 

ncRNA alterations in binge exposure paradigms that represent different developmental 

time points. The results show that PAE by any of the paradigms alters the expression of a 

number of ncRNAs in the adult brain (Appendix B). The results also show that long-term 

changes in miRNA expression are dependent on the treatment paradigm (Appendix C). 

The exception to this pattern is Snord115 (MBII-52) snoRNA expression, which is 

affected regardless of the timing of exposure (Appendix D). The connection of the 

ncRNA expression to loci of genomic imprinting then raised the question: are alterations 
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to methylation responsible for maintaining the long-term alterations to ncRNA and 

mRNA expression? 

In the third set of experiments, long-term alterations to DNA methylation were 

examined. At the general level, the examination revealed a genome-wide scale of change 

(Figure 2.5). However, the alterations were non-random. The ontologies (Tables 2.5 & 

2.7) and pathways (Figures 2.6 & 2.7 and Table 2.8) altered are related to calcium 

signaling, ion transport, stem cell signaling, cell adhesion, synaptic events, immune 

processes, and the cell membrane. The alterations were seen in predicted and known 

CTCF binding sites (Figure 2.8) including those of H19, which was previously shown to 

be deregulated by PAE (Haycock & Ramsay 2009) and provides further evidence for the 

sensitivity of genomic imprinting to PAE.  

Finally, because gene expression, miRNA expression, and DNA methylation were 

all examined in the CPD paradigm, the different datasets were integrated to observe any 

biological relationships. Notably, a larger scale of alteration was seen to DNA 

methylation as compared to gene and ncRNA expression. Furthermore, few genes and 

ncRNAs showing altered expression also showed altered DNA methylation. This lack of 

correlation between altered epigenetic marks and transcription has been reported in the 

literature (Veazey et al. 2015). The lack of correlation presumably reflects on the 

combinatorial nature of the epigenome, where multiple modifications are needed for 

effect. Furthermore, the lack of correlation also reflects on the fact that the gene 

expression tested is from mice in a resting steady state and that differential expression 

could be seen under other activating conditions (Lussier et al. 2015). However, despite 

the complexity of the relationship of the epigenome to transcription, three key 

observations that warrant further examination for both biomarker and therapeutic 

development have emerged. First, are imprinted clusters of ncRNA, second are select 

gene clusters, and third is cellular signaling. 

2.5.1 Imprinted ncRNA Clusters  

Approximately 20% of the miRNAs and some snoRNAs showing differential 

expression are encoded by one of three imprinted regions of the mouse genome: Snrpn-

Ube3a (murine 7qC/human 15q11-q13), Dlk1-Dio3 (murine 12qF1/human 14q32.2), and 
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Sfmbt2 (murine 2qA1) regions. Genes within these regions displayed differential 

methylation. The Sfmbt2, Snrpn-Ube3a, and Dik1-Dio3 regions are of special interest to 

PAE because they are also known to affect a range of endophenotypes seen in FASD. 

These include impaired growth, craniofacial abnormalities, and a range of cognitive and 

behavioral deficits (May & Gossage 2001). The detailed biological consequences and 

evolutionary relationship of these imprinted clusters have been previously reviewed 

(Laufer & Singh 2012); however, their connection to FASD endophenotypes is briefly 

described below.  

Snrpn-Ube3a expresses a neuron-specific polycistronic transcript. The Snrpn-

Ube3a transcript is processed into two clusters of snoRNAs, H/MBII-52 (Snord115) and 

H/MBII-85 (Snord116) (de los Santos et al. 2000; Runte et al. 2001; Le Meur et al. 2005) 

that were deregulated by PAE. This transcript also codes for a number of alternative 

ncRNA species (Kishore et al. 2010; Bortolin-Cavaille & Cavaille 2012; Falaleeva & 

Stamm 2012). For example, a long non-coding RNA (lncRNA) transcribed from Snrpn-

Ube3a undergoes alternative splicing where the introns are processed into SNORD116 

snoRNAs, while the spliced exons form a functional lncRNA (116HG) (Powell, Coulson, 

Crary, et al. 2013; Powell, Coulson, Gonzales, et al. 2013). 116HG forms a lncRNA 

cloud that modulates genes involved in circadian rhythm and energy expenditure, which 

notably includes mTOR, (imprinted) Ifg2r, and Crebbp. Notably, Snord116 and Ipw, both 

of which are in the Snrpn-Ube3a locus, showed significant (p<0.002) alterations to 

methylation in the updated (2016) analysis. 

Furthermore, the array results from this chapter follow those of Liu et al., who 

have reported that PAE causes differential methylation at Ube3a, which also has an 

antisense transcript (Liu et al. 2009). The Snrpn-Ube3a locus is involved in the classic 

sister imprinting disorders Prader-Willi syndrome (OMIM: 176270) and Angelman 

syndrome (OMIM: 105830), both of which display developmental delay and deficits in 

cognitive function (Knoll et al. 1989; Wagstaff et al. 1992). Interestingly, H/MBII-52 

(Snord115) and H/MBII-85 (Snord116), are believed to be key players in these disorders 

(Buiting 2010; Bieth et al. 2015). Furthermore, overexpression of Snord115 in a paternal 

duplication mouse model results in poor social interaction, behavioral inflexibility, 

abnormal ultrasonic vocalizations, and anxiety (Nakatani et al. 2009). SNORD115 
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changes the alternative splicing of the serotonin receptor 5HTR2C (Kishore & Stamm 

2006; Glatt-Deeley et al. 2010), which is a G-protein coupled receptor involved in 

calcium signaling (Nakatani et al. 2009). Snord115 also regulates the splicing of genes 

(Dpm2, Taf1, Ralgps1, Pbrm1, and Crhr1) involved in the cell cycle, chromatin 

modification, and development (Kishore et al. 2010). Further investigation has also 

revealed that SNORD115 and SNORD116 can regulate a large number of genes, as well 

as modify each other’s activity (Falaleeva et al. 2015).  

The Dlk1-Dio3 locus expresses over 40 miRNAs contained in two clusters, 

including a cluster of snoRNAs that contains Snord113 and Snord114 that were 

deregulated by PAE (Appendix E) (Seitz et al. 2004). Notably, Meg3 (also known as 

Gtl2) showed significant differences in methylation in both the original (2012) and 

updated (2016) analyses (Figure 2.8 & Table 2.6). Altering the dosage of the imprinted 

genes at the Dlk1-Dio3 region has also been shown to cause a range of endophenotypes, 

from growth deficiencies and developmental defects in the embryo and placenta, to 

defects in adult metabolism and brain function (Rocha et al. 2008). Some of the Dlk1-

Dio3 miRNAs are involved in activity dependent dendritic outgrowth of hippocampal 

neurons (Fiore et al. 2009). A rat model has also shown that PAE alters the expression of 

Dio3 and antisense Dio3os in the hippocampus, as well as altering related behaviors and 

physiology (Sittig et al. 2011; Dietz et al. 2012).  

SFMBT2 is a polycomb binding protein that interacts with, or ‘reads’, histones 

and transcriptionally represses HOXB13 (Lee et al. 2013). Sfmbt2 contains a rodent-

specific large cluster of miRNAs that has led to it becoming genomically imprinted 

(Wang et al. 2011). Sfmbt2 showed decreased methylation in the updated (2016) analysis 

and its miRNAs were deregulated by PAE (Appendix E).  Maternal disomy of the Sfmbt2 

region results in fetal and placental growth retardation, whereas paternal disomy was 

shown to result in normal fetal growth and placental overgrowth (Kuzmin et al. 2008). 

Recently, another moderate and voluntary maternal PAE paradigm was shown to alter 

adult levels of a vesicular glutamate transporter in the mouse hippocampus (Zhang et al. 

2015). The glutamate transporter showed increased mRNA levels that were correlated 

with decreased DNA methylation and increased (activating) H3K4me3 at the transporter 

promoter. Notably, while mRNA (Slc17a6) levels of the transporter were increased, the 
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protein (VGLUT2) levels were decreased by an imprinted miRNA (miR-467b-5p) from 

the Sfmbt2 cluster, which was functionally confirmed to bind to the transporter mRNA.  

Both the Snrpn-Ube3a and Dlk1-Dio3 regions undergo allele-specific chromatin 

decondensation (or ‘unwinding’) during neuronal maturation (Leung et al. 2009; Leung et 

al. 2011). These clusters are also shared between mice and humans and expressed in 

embryo, placenta, and in the adult, in which their expression is confined mostly to the 

brain (Seitz et al. 2004). The Snrpn-Ube3a and Dlk1-Dio3 regions have also been 

associated with several neurodevelopmental disorders (Leung et al. 2009). Furthermore, 

all three imprinted ncRNA clusters contain polycistronic transcripts, with some processed 

transcripts initially showing similar levels of expression that then change as a result of 

unequal stability (Seitz et al. 2004; Le Meur et al. 2005; Fiore et al. 2009; Wang et al. 

2011).  

The observations suggest that PAE might alter the regulation of not only 

individual miRNAs or snoRNAs, but entire clusters of co-regulated ncRNAs. More 

importantly, this process could involve differences in DNA methylation as DNA 

methylation is a functional mark at imprinting control regions. The nature of imprinted 

ncRNAs creates the potential for an environmentally responsive mechanism in the 

regulation of neurodevelopmental gene expression. Ultimately, given the observation of 

upregulated Snord115 in all four paradigms examined, the confirmation of results across 

two independent array technologies, and the similar endophenotypes associated with 

alterations to it, Snord115 may serve as an ideal candidate for future functional 

experiments investigating PAE. Thus, the above observations suggest that the similarity 

and variability in the manifestation of FASD could be in part attributed to the common 

(Snord115) and different ncRNAs and genes affected as a result of variability in 

exposure. 

2.5.2 Gene Families  

A number of gene families showed significant differential methylation as well as 

expression and may contribute to the endophenotypes of FASD. Some of these results are 

also supported by publications from independent groups. In terms of the histone genes, 

Hist1h3b also showed altered methylation in a whole embryonic culture of C57BL/6J 
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mice at early neurulation (Liu et al. 2009). The observation of altered methylation and 

expression observed from this gene family suggests transcriptional repression of histone 

protein production and, furthermore, a global deregulation of the cell cycle and epigenetic 

landscape that remains long after PAE. 

The Hox genes were also deregulated by PAE. In the T2 binge injection model 

mir-10b showed a -1.5 fold change (p=0.002) (Mantha et al. 2014). Notably, mir-10 is 

located within the Hox genes and also targets some of them (Lund 2010). Hox genes are a 

subset of homeobox genes and encode transcription factors that regulate developmental 

patterning, including in the brain (MacLean & Wilkinson 2010). The only unifying 

feature of all homeobox genes is that they encode a homeodomain, a motif that binds to 

specific DNA sequences, proteins, and even some RNAs (Shyu & Wilkinson 2000; 

Svingen & Tonissen 2006). Homeobox transcription factors have important roles in 

regulating the differentiation of cells during embryonic development by specifying the 

spatial positioning of cells and controlling cellular proliferation, apoptosis, cell adhesion, 

and cell migration (Pearson et al. 2005). Deregulation in the expression of homeobox 

genes can result in drastic alterations in development and subsequently result in profound 

changes in the identity of body segments (Duboule 2007; Krumlauf 1994).  

At the genomic level, the vertebrate Hox gene clusters show a specific 

organization (Duboule 2007). The four Hox clusters of mammals map to distinct 

chromosomes, are termed HoxA through HoxD, and contain 9 to 11 protein-coding genes 

that are transcribed from the same strand (Yekta et al. 2008). In many vertebrates the Hox 

genes are organized on chromosomes in a linear way that matches their expression order 

along the anterior-posterior axis. Furthermore, the Hox clusters are targeted by a number 

of miRNAs, some of which originate within the Hox clusters and have also been 

implicated in FASD (Yekta et al. 2008; Wang et al. 2009). Over 200 ncRNAs arise from 

around the Hox clusters, including miRNAs and the long non-coding RNA HOTAIR, 

which is transcribed from HoxC and results in repressive H3K27me3 at HoxD by 

recruiting polycomb repressive complex 2 (Rinn et al. 2007). The Rhox gene family is a 

set of homeobox genes clustered on the X chromosome (MacLean et al. 2005). The 

mouse Rhox gene cluster is the largest homeobox gene cluster. Similar to most homeobox 

genes, Rhox genes are expressed during embryonic development (MacLean et al. 2005; 
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Hogeveen & Sassone-Corsi 2005; Zhan et al. 2005; Daggag et al. 2008). However, unlike 

most homeobox genes, Rhox genes also show high gene expression levels after birth 

(MacLean et al. 2005). Thus, Rhox genes are candidates to control postnatal and adult 

developmental events, particularly those essential for male and female reproduction. 

Rhox5 is the most characterized Rhox gene and is regulated by many different stimuli, 

including differentiation signals, oncogenic signals, and hormones (Kobayashi et al. 

2006). Recently, Rhox5 was demonstrated to be regulated by histone H1 and DNA 

methylation (Maclean et al. 2011). Furthermore, alcohol dehydrogenase is critical for 

converting retinol to retinaldehyde, which is competitively inhibited by ethanol, and then 

later converted to the signaling molecule retinoic acid (Mezey & Holt 1971). As a 

developmental signaling molecule in mammals, retinoic acid is used to activate the 3’ 

Hox genes (Duester 2008). Thus, the Hox genes appear to represent a connection between 

acute alterations to developmental signaling and long-term alterations to the epigenome.  

Deregulation of the keratin-associated protein (Krtap) gene family was also 

observed. These results are similar to Marjonen et al., where a similar mouse model was 

used and a significant (p=0.04) 2.1 fold increase in the expression of Krtap6-1 and a 

significant (p=0.004) 1.7 fold decrease in the expression of Krtap27-1 was observed 

(Marjonen et al. 2015). Notably, keratinocytes constitute the vast majority of the 

epidermis (McGrath et al. 2004). It is tempting to speculate that these alterations in the 

adult brain may reflect on earlier alterations to developmental stem cell identity during 

neurulation where neural progenitor cells and the epithelium/epidermis begin to 

differentiate from each other. This observation may also alternatively or additionally 

reflect on the possibly of a premature exit from the cell cycle. 

Adam (a disintegrin and metalloproteinase) and Adamts genes were also 

deregulated by PAE. These peptidase gene families are involved in cleaving the extra-

cellular portions of trans-membrane proteins and stimulate neural crest migration 

(Prendergast et al. 2012; Kulesa & McLennan 2015). They have a role in cell adhesion 

and cell signaling as they are used to cleave and thus regulate cell surface molecules, such 

as Cadherin, Ephrin, EGF, TNF-α, and Notch (Reiss et al. 2005; Alfandari et al. 2009). 

ADAM10 also processes APP, which is involved in Alzheimer’s disease (Haass et al. 

2012). Furthermore, Adam13 has been shown to be required for 3 dimensional cranial 
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neural crest cell migration and interact with Cadherin11 (Cousin et al. 2012). Finally, 

another transmembrane protein family is the Tmem gene family, which is relatively 

uncharacterized and be may representative alterations to cellular signaling. 

2.5.3 Alterations to Cellular Signaling Genes 

The most significantly altered (p=9.01E–7) canonical pathway identified by the 

2012 analysis was Cdk5 signaling, where 60% of the genes involved showed significant 

differential methylation (Figure 2.6). Cdk5 signaling is a sensory pathway that is 

restricted to the nervous systems and plays a critical role in neuronal migration, neuronal 

differentiation, neurite outgrowth, synaptic vesicle exocytosis and neurotransmission, 

long-term potentiation, as well as the proteasome, autophagy, and apoptosis (Cheung & 

Ip 2012). Notably, Cdk5 signaling has been implicated in neurodegenerative diseases and 

circadian rhythm (Cheung & Ip 2012; Kwak et al. 2013).  

Additionally, 57% of the genes involved in the Pten signaling pathway showed 

significant (p=1.9E–06) differential methylation (Figure 2.7). Pten, was upregulated 

(1.38-fold change and p=2.5E–03) and the three miRNAs (mir-369-5p, mir-25 and mir-

495) that were predicted to target it by IPA were downregulated, with mir-369-5p 

belonging to the Dlk1-Dio3 cluster (Appendix A). This signaling pathway was also 

identified in the updated (2016) analysis as the phosphatidylinositol signaling system 

(Table 2.8). PTEN functions as a lipid phosphatase that counteracts the kinase function of 

phosphatidylinositol-3-kinase (PI3K) and suppresses AKT activation (Maehama & Dixon 

1998). Akt, which showed a gain of methylation at a predicted CTCF binding-site (Figure 

2.8A), is a major mediator of signaling pathways in response to a large spectrum of 

extracellular stimuli, which include PAE (Hard et al. 2005). Upon its activation in 

neurons, AKT phosphorylates different substrates, which in turn regulate diverse 

processes of neuronal development, including morphogenesis, dendritic development, 

synapse formation and synaptic plasticity, all of which are altered in FASD (Yoshimura et 

al. 2006). Furthermore, AKT is known to regulate autophagy/lysosome and 

ubiquitination/proteasome systems, which recycle damaged proteins (Wang et al. 2012; 

Xu et al. 2015). AKT has been shown to phosphorylate the GABAA receptor, which 

increases the number of receptors on the plasma membrane surface, and thus promotes 
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synaptic plasticity (Wang et al. 2003). Studies in mice with a targeted inactivation of Pten 

in differentiated neurons showed abnormal social interaction and exaggerated responses 

to sensory stimuli (Kwon et al. 2006). Given the integral role of Pten in 

neurodevelopment, it is no surprise that it has been implicated in the developmental basis 

of many major psychiatric disorders (Kim et al. 2009) and FASD (Green et al. 2007). 

Overall, the alterations to all of the above clusters and signaling pathways suggests that 

there may be a molecular footprint of alterations to developmentally important regions 

that is sometimes but not always reflected in adult gene expression.   

2.5.4 Considerations for Future Research 

The research presented in this chapter highlights a number of considerations for 

future experimentation. The first consideration is the confirmation of alterations to gene 

expression. Although qPCR is the gold standard for confirmation, the technology used at 

the time of experimentation contained a limitation related to experiments of this nature. 

Specifically, it may not be sensitive enough to consistently detect low, but statistically 

significant, fold changes (<2.0) (Peirson & Butler 2007; Vikalo et al. 2010) that are 

typical of the fine-tuning nature of miRNAs (Moazed 2009). The results presented in this 

chapter are similar to Marjonen et al., where a voluntary maternal consumption PAE 

paradigm revealed alterations to similar gene families. They noted that, “The expression 

levels of the differentially expressed genes observed in hippocampus were low and 

impossible to verify by quantitative PCR (TaqMan)” (Marjonen et al. 2015). More 

recently, the Singh lab has shown that digital droplet PCR (ddPCR), which is a more 

sensitive technology capable of detecting low fold changes and low copy numbers, can be 

used to confirm changes not found to be significant by standard qPCR (Chater-Diehl et al. 

2016). Therefore, future PAE experimentation would benefit from utilizing ddPCR as a 

method for confirming some alterations to gene expression.  

The second consideration for future research is cell type heterogeneity. In this 

chapter whole brain homogenate, which contains a number of cell types including 

neurons and glia, was examined. Therefore, the observed differential gene and ncRNA 

expression as well as DMRs may represent a combined epigenomic signature of depleted 

vulnerable cell types as well as specific alterations to the epigenome of surviving cells 
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(Kleiber, Diehl, et al. 2014). Future experimentation would benefit from single-cell 

sorting techniques. The third technical consideration for future research is the functional 

confirmation of predicted miRNA and target mRNA binding. This could be accomplished 

by in vitro luciferase reporter assays (Zhang et al. 2015). The fourth technical 

consideration is the utility of updating previous bioinformatic analyses. Bioinformatics is 

a rapidly advancing field and over relatively short periods of time a number of new 

annotations, algorithms, and software packages become available. Updated or new 

bioinformatic methods can offer additional insight into previous analyses and allow for a 

more direct comparison to more recent experiments utilizing the newer methods. 

However, as the results of this research suggest, a newer analysis does not necessarily 

invalidate a previous analysis as each bioinformatic method may be better suited for a 

specific application. Ultimately, with all of the above considerations in mind, there are a 

number of conclusions that can be drawn from the results of this chapter.   

2.5.5 Conclusion 

The results of this research demonstrate in vivo, long-term, and epigenome-wide 

alterations in PAE mice. Furthermore, the changes in DNA methylation and ncRNAs may 

maintain long-term alterations to gene expression following PAE, as the epigenomic 

changes appear to begin at the time of PAE, where they may then be inherited through 

successive cell proliferation and differentiation. Thus, the mouse model results presented 

in this chapter offer the hypothesis that an ontogenetic ‘footprint’ of PAE exists long after 

exposure (Kleiber et al. 2012) and provides novel evidence that was used to expand it into 

the epigenetic landscape (Kleiber, Diehl, et al. 2014; Chater-Diehl et al. 2016). The 

alterations in the epigenome and transcriptome are hypothesized to have arisen in 

developmentally and/or functionally similar genes in early stem cells (Kleiber, Diehl, et 

al. 2014; Marjonen et al. 2015). Finally, this footprint may undergo additional 

modification throughout development and by other environmental exposures.  

Ultimately, the results of this research provide a number of candidate genes and 

pathways for future functional genomics studies and also provide a foundation for human 

studies. Perhaps more importantly, the epigenomic hypothesis of FASD as proposed may 
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be applied towards understanding the effect of neurodevelopmental exposures, which 

includes insight into neurodevelopmental disorders. 

 

Footnote 

A modified version of this chapter has been published (Laufer et al. 2013).  
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Chapter 3 

Exploration of Differential DNA Methylation in 
Children with FASD 

3.1. Overview 

The results included in chapter 2 show that prenatal alcohol exposure (PAE) in 

mice involves changes to the DNA methylation of genes implicated in the manifestation 

of a number of endophenotypes related to fetal alcohol spectrum disorders (FASD). The 

results suggest that the differential DNA methylation in mice is caused by PAE. 

Furthermore, the alterations to DNA methylation may maintain changes to gene 

expression, which are present at adulthood and may result in the lifelong manifestation of 

some FASD endophenotypes. The experiments included in this chapter examine young 

children with a diagnosis of FASD whose mothers consumed alcohol during pregnancy. 

The human experiments had a restriction in that post-mortem brains were not available. 

Therefore, buccal swabs were utilized as they can be obtained non-invasively from 

individuals of any age and buccal epithelial cells represent the closest peripheral lineage 

related to cells incorporated in the brain. 

This chapter analyzes data from human samples and characterizes the altered 

genome-wide CpG methylation profile in buccal swabs from children with FASD as 

compared to age, sex, and genetic background matched controls. Most, but not all, of 

these results are published in Laufer et al. (2015). The results have revealed a set of 

candidate genes and pathways that are altered by PAE in children with FASD. Select 

CpGs from the methylomic profile of the discovery cohort (nFASD=5, ncontrol=6) were 

further examined in a larger number of children. The results show heterogeneity that is 

patient specific. As it stands, no single gene is consistently affected in all patients. 

However, the results do suggest that, as in mice, children with FASD show non-random 

changes in DNA methylation as compared to matched controls. 
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3.2.  Introduction 

The mechanisms of how PAE results in life-long FASD remains a major concern 

in the medical community. The cause of FASD, PAE, is known (Williams et al. 2015) 

and theoretically 100% preventable, yet the impact on society remains substantial. 

Current preventive and ameliorative strategies are complex and ineffective. The best 

strategy available is an early diagnosis that enables early therapeutic intervention (Paley 

& O’Connor 2009; Chokroborty-Hoque et al. 2014). A reliable method for early 

diagnosis of FASD is not yet available and will require understanding the underlying 

long-term molecular mechanisms. For a variety of reasons, the best insight into FASD has 

come from studies of animal models. Molecular results from rodent models of PAE have 

suggested that epigenetic alterations underlie FASD (Kleiber et al. 2014) and have been 

reproduced in a number of laboratories (Marjonen et al. 2015; Basavarajappa & Subbanna 

2016). Unlike mouse model research, reports on the epigenetic profiles of humans with 

FASD are rather limited.   

In 2009, Ouko et al. examined the sperm of alcohol consuming adult men and 

found hypomethylation at the two imprinted regions; H19 and DLK1-DIO3 (Ouko et al. 

2009). In 2010, Krishnamoorthy et al. examined human embryonic stem cells and 

observed that exposure to low amounts of alcohol altered a nicotinic acetylcholine 

receptor subunit (CHRNA5), which is linked to the altered expression of GABA and 

Glutamate (NMDA) receptors  (Krishnamoorthy et al. 2010). In 2011, Taléns-Visconti et 

al. examined neural differentiation in neuroepithelial progenitor cells, which were 

induced from human embryonic stem cells (hESCs), and observed that alcohol alters the 

survival, differentiation into neurons and glia, and expression of select genes related to 

these processes (Talens-Visconti et al. 2011). 

More recently, Khalid et al. examined the transcriptome and methylome of hESCs 

exposed to alcohol (Khalid et al. 2014). They observed that the expression of genes 

related to metabolic processes, oxidative stress, and neuronal properties of stem cells 

were altered. The group also examined differential methylation and observed that 

undifferentiated cells appear to be more vulnerable to alcohol than their differentiated 

counterparts, the alterations are wide-spread with distinct regions of hypermethylation, 

and that not all altered methylation corresponds to altered transcription. The top genes 
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showing altered methylation were involved in neuroactive ligand–receptor interaction, 

vascular smooth muscle contraction, calcium signaling pathways, and energy metabolism. 

Additionally, Halder et al. and Mandal et al. examined the effect of alcohol on human 

embryonic carcinoma cells that were induced to undergo neural differentiation (Halder et 

al. 2015; Mandal et al. 2016). They observed alterations in pathways related to 

neurodevelopment, cell-signaling (including PI3K/AKT/mTOR), and cell-adhesion.  

At the time of this research, two other research groups had published in vivo 

examinations of the association between FASD and DNA methylation at select loci in 

humans. Lee et al. examined a Korean cohort of families, where it was found that there 

are changes in the unsorted peripheral blood of parents and also the cord blood of FASD 

children (Lee et al. 2015). There was a significant reduction of methylation to the 

promoter of a dopamine transporter (SLC6A3) in heavy alcohol consuming fathers and 

their offspring. The SLC6A3 promoter also showed a significant decrease of promoter 

methylation in mothers who consumed both moderate and heavy amounts of alcohol. The 

methylation of a serotonin transporter (SLC6A4) promoter was significantly decreased in 

children from both heavy and moderate alcohol consuming mothers. Methyl CpG binding 

protein 2 (MECP2) showed increased promoter methylation in the offspring of mothers 

with moderate alcohol consumption. The other human report is by Masemola et al., who 

examined saliva in a South-African cohort (Masemola et al. 2015). There is elegance to 

the examination of saliva (buccal epithelial cells) in that the cells share an ontogenetic 

relationship to neuronal cell types via the ectoderm. The aforementioned study only 

focused on confirmed cases of FAS, and did not examine FASD, and the differential 

methylation examined was limited to few selected imprinting control regions (ICRs). 

Most of the pyrosequenced regions weren’t informative but there were significant 

decreases of methylation in maternal ICRs. KvDMR1 showed a 7.09% decrease in 

methylation and PEG3 showed a 1.49% decrease.  

Taken together, the examinations into human cells shows similarities in alcohol 

response to the mouse model presented in chapter 2. Also, at the time of this research, no 

published study on humans had attempted genome-wide DNA methylation scans of 

patients born with FASD. In this chapter, I will describe the results of experiments on 

cheek swab DNA methylation from young children diagnosed with FASD as compared to 
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unaffected (age, sex, and race) matched controls. The results are informative and argue 

that the effects of PAE on DNA methylation are similar but not identical between the 

mouse model and human patients. The results suggest that the mouse model used to study 

the molecular underpinning of PAE is valid. They also show that the analysis of a single 

gene cannot be used to identify FASD, which demonstrates the heterogeneity of this 

complex disorder. 

3.3. Materials & Methods 

The results are primarily based on two cohorts [discovery (nFASD=5, ncontrol=6) and 

replication (nFASD=6, ncontrol=6)] of young children clinically diagnosed with FASD by Dr. 

J. Kapalanga in Ontario, Canada. All subjects of the discovery cohort had most features 

of FASD and matched controls showed no sign of the disorders (Table 3.1A). The 

patients were recruited from the same clinic while visiting for annual check-ups or 

relatively minor non-neurodevelopmental or behavioural problems, which may include 

asthma, allergies, musculoskeletal problems, or gastrointestinal problems. Following 

ethical approval and informed consent from parents or guardians, the study subjects 

contributed cheek swabs for analysis of buccal epithelial DNA. A second cohort of FASD 

patients (replication cohort) was comprised of a different set of 6 children with FASD and 

unaffected controls. Although four (E8, E13, E18, E19) of the six patients of the 

replication cohort were 6 -10 year-old males and not on medication, two were older 7 and 

9 year-old females (E7 and E17) and on psychotropic/stimulant medication (Table 3.1B). 

Finally, a third cohort representative of the general population, and consisting in part of 

the first two cohorts, from Owen Sound, Ontario was also examined (Appendix G). This 

cohort primarily consisted of FASD patients that were much more heterogeneous. The 

FASD patients and matched controls in the general population cohort were much more 

variable in terms of age, sex ratio, ancestry, family history of mental illness, as well as 

other medical conditions and required medication. 
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Table 3.1. Clinical features of patients from the discovery (A) and replication (B) cohorts 

with the diagnosis of FASD. 

 
A Discovery Cohort             

 
Patient ID E1 E2 E3 E4 E5 E6 

 

Patient  (Age) and Sex  (6)  
M 

 (6)  
M 

(5)  
M 

(4)  
M 

 (3)  
M 

(3) 
 M 

 
Clinical Features             

 
Developmental delay  x x x x x x 

 
Hyperactivity, poor impulse control  x x x x x x 

 
Learning disorders x x x       

 
Short attention span and inattention x x   x     

 
Conduct disorder x x x   x   

 
Oppositional defiant disorder x     x x   

 
Social difficulties x     x x   

 
Nervousness and anxiety   x x x     

 
Mood disorder x     x     

 
Macrocephaly/macrotia   x x       

 
Microcephaly/microtia       x x   

 
Distinctive facial features x     x x x 

 
Stimulant/Psychotrophic Meds No No No No No No 

        B Replication Cohort             

 
Patient ID E7 E8 E13 E17 E18 E19 

 

Patient (Age) and Sex  (7)  
F 

(6) 
 M 

(6)  
M 

(9)  
F 

(6)  
M 

(10) 
 M 

 
Clinical Features             

 
Developmental delay  x x x   x x 

 
Hyperactivity, poor impulse control  x x x x x x 

 
Learning disorders x   x   x x 

 
Short attention span and inattention x x x x x x 

 
Conduct disorder x x x x x x 

 
Oppositional defiant disorder x x x x     

 
Social difficulties x x x       

 
Nervousness and anxiety x x x     x 

 
Mood disorder     x x   x 

 
Macrocephaly/macrotia   x         

 
Microcephaly/microtia           x 

 
Distinctive facial features x   x     x 

 
Stimulant/Psychotrophic Meds  Yes No No Yes No No 
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3.3.1. Methylation Array 

The Illumina HumanMethylation450 BeadChip (450K array) is a dual channel 

SNP genotyping microarray that utilizes sodium bisulfite conversion and a targeted array 

approach to examine DNA methylation. During sodium bisulfite treatment, cytosine is 

converted by deamination to uracil, whereas 5-methylcytosine (5mC) is protected from 

the conversion. During PCR amplification, uracil is paired with adenine and that adenine 

is later paired thymine. Thus, bisulfite conversion creates a single nucleotide variant that 

converts cytosine to thymine, whereas 5mC is detected as a cytosine. The 450K array 

interrogates 485,764 sites at single nucleotide resolution across 99% of RefSeq genes 

(Bibikova et al. 2011; Sandoval et al. 2011). There is an average of 17 CpG sites per a 

gene that represent the promoter, 5’ UTR, first exon, gene body, and 3’ UTR. The 450K 

array covers 96% of CpG islands and other features, as well as sites based on genome-

wide association studies (GWAS). Methylation levels, known as β-values, are determined 

by comparing the ratio of C to T at the CpG site. 

In order to analyze their DNA methylation, individual cheek swabs from FASD 

and matched control children were used to isolate genomic DNA using the QIAamp DNA 

Mini Kit following manufacturer’s protocol. This DNA was subject to sodium bisulfite 

modification at The Centre for Applied Genomics (Toronto, Canada). The genome-wide 

CpG methylation for each subject was assessed using the 450K array, following the 

manufacturer’s protocol. The arrays were scanned using Illumina’s GenomeStudio at The 

Centre for Applied Genomics (Toronto) that generated scan data (.idat files) for each 

subject used in this analysis.  

The .idat files were analyzed using Partek Genomics Suite® Version 6.6. A site 

based DNA methylation workflow for Illumina BeadArray Methylation was utilized. Pre-

processing using both control normalization and background subtraction was performed 

using Illumina’s algorithm to generate β-values. β-values were then normalized, 

converted to a fold-change and subjected to a one-way ANOVA analysis to identify 

regions of differential methylation using annotations from Hg18. Custom genome dot 

plots (also known as Manhattan plots) were generated from the ANOVA results. 

Different stringencies of genes list were used for hierarchical clustering (p<0.005), gene 

ontology (p<0.005) analysis using Enrichr (Chen et al. 2013), and bioinformatic pathway 
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analysis via Partek Pathways (p<0.05). Additional annotations were added to top CpGs 

using Ensembl (Flicek et al. 2014) (for novel ncRNAs) and Uniprot (UniProt-Consortium 

2014) (for protein function and localization). The subset-quantile within array 

normalization (SWAN) algorithm (Maksimovic et al. 2012; Fortin et al. 2014) from the 

minifi bioconductor package was used within Partek to allow for the multi-batch analysis 

(Pidsley et al. 2013). 

3.3.2. Pyrosequencing  

Pyrosequencing® is a sequencing by synthesis method (Tost & Gut 2007; Nyrén 

2007). When a deoxyribonucleoside triphosphate (dNTP) is incorporated a pyrophosphate 

is released. The pyrophosphate is converted to ATP and used by luciferase to produce 

light. The nucleotides are added a single base a time, and degraded by apyrase in-between 

steps. Pyrosequencing enables absolute quantification of methylation levels without 

depending on normalization to matched controls, and thus is ideal for obtaining 

methylation in individual cases. While the gold standard for DNA methylation, 

pyrosequencing is relatively limited by short reads and a high use of resources.   

In order to confirm the results of the 450K array, the same bisulfite converted 

buccal swab DNA from the discovery cohort array was pyrosequenced by EpigenDx on 

the PSQ96 HS System (Qiagen) following the manufacturer’s instructions, using custom 

assays (www.EpigenDx.com), and a gradient of controls with known methylation levels. 

This allowed for the quantification of the absolute percent methylation of each CpG using 

QCpG software (Qiagen) (Lim et al. 2014). The sequencing reads also allowed for the 

analysis of SNPs known to be within or close to the CpGs of the 450K probes.  

For the follow-up into the general population cohort, assays were developed based 

on performance from the DNA methylation arrays, primarily from the discovery cohort. 

A number of genes affected in arrays were examined by pyrosequencing. The gene 

COLEC11 was selected based on results on the 450K arrays and the NGS panel. 

PCDBH18 was selected based on performance on the human arrays and the results in the 

trimester 3 binge exposure mouse model. HTT was selected due to performance on 

previous DNA methylation arrays and pyrosequencing. Furthermore, a number of CpG 
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sites located at 12q24.31, 10q26.12, and 2q22.1 were selected based on performance from 

the NGS panel.  

3.3.3. NGS Panel 

The Ion Torrent Personal Genome Machine (PGM)TM is a next-generation 

sequencing (NGS) system that utilizes sequencing by synthesis and detects the release of 

hydrogen ions from dNTPs during polymerization (Merriman et al. 2012). dNTPs are 

added one at a time and the released hydrogen ion is detected by an ion sensor. While the 

Ion Torrent PGM is less accurate than pyrosequencing, it is more resource effective and 

thus can be used to create custom targeted bisulfite sequencing panels to screen a large 

number of loci across relatively few samples. Therefore, a subset of the 268 CpGs 

identified on the arrays were selected for further development on a next generation 

sequencing (NGS) panel using the Ion Torrent PGM. Thirty of the top performing CpGs 

from the 450K array were selected as loci for primer design based on the criteria of a 

greater than 1.5 fold change and a preference against a large number of flanking CpGs. 

Thirty gene and intragenic sequences +/- 5000 bases were acquired from the Ensembl 

database or UCSC database. Target regions of each gene were selected based on the 

methylation array results. The panel design, bisulfite conversion, sequencing, and 

calculation of methylation values was performed by EpigenDx (Hopkinton, MA). 

500 ng human genomic DNA was bisulfite treated using the EZ DNA Methylation 

Kit (Zymo Research). Multiplex PCR was performed using 0.5 units of TaKaRa EpiTaq 

HS (Takara Bio) in 2x master mix including primers (EpigenDx) in a 20 µl reaction. The 

PCRs were performed using the following protocol: 95ºC 15 min; (95ºC 30s; 63ºC (or 56 

ºC) 30 s, -1°C; 68ºC 30 s) 9x cycles; (95ºC 30s; 55ºC (or 50ºC) 30 s; 68ºC 30 s) 36x 

cycles; 68ºC 5 min; 4ºC hold. Libraries were prepared using the KAPA Library 

Preparation Kit (Cat# KK8310) for Ion Torrent and were quantified by real-time PCR 

using KAPA Library Quantification (KAPA Biosystems). 344 million library molecules 

were templated using the Ion PGM Template OT2 200 kit and sequenced using an Ion 

PGM™ Sequencing 200 Kit v2 kit with Ion 316™ and Ion 318™ Chips (Life 

Technologies) on the Ion Torrent PGM. FASTQ files from the Ion Torrent PGM were 

aligned to the local database using open source Bismark Bisulfite Read Mapper with the 
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Bowtie2 alignment algorithm. Methylation levels were calculated in Bismark by dividing 

the number of methylated reads by the number of total reads, considering all CpG sites 

covered by a minimum of 30 total reads.  

The results presented include a total of 31 target PCRs designed by PyroMark 

Assay Design Software (Qiagen, Pyrosequencing) for the assessment of the human 

samples. During design and optimization 23 loci passed quality control for assay design, 

leaving a total of 67 CpGs for analysis from the Buccal swabs of children. The CpG 

methylation level was then analyzed using a one-way ANOVA.  

3.4. Results 

The results suggest that FASD is associated with a profile of differential DNA 

methylation in buccal swabs. Using a stringent but not false discovery rate (FDR) 

corrected CpG list (p<0.005), genome-wide differential methylation of children with 

FASD was analyzed in the: (A) discovery cohort and (B) replication cohort (Figure 3.1). 

In each case, the heatmaps show that children diagnosed with FASD clearly group 

together and are distinct from matched non-FASD controls. From theses arrays a one-way 

ANOVA was created to generate a list of CpGs and corresponding genes that showed 

significant differential methylation between FASD children and matched controls (after 

pre-processing and data normalization). The results of the discovery and replication 

cohorts were analyzed separately in order to avoid any batch effects. This analysis of the 

discovery cohort that represented established maternal drinking and relatively uniform 

manifestation of FASD (developmental delays, hyperactivity/poor impulse control, and 

mental deficits) identified 268 significantly (p<0.005) differentially methylated CpG sites 

(Appendix H). Also notable is the differential methylation of genes that modify the 

epigenome, such as EHMT2 (p=0.0002), PRDM6 (p=0.004), and HDCA4 (p=0.004). 
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Figure 3.1. Differential DNA methylation in children diagnosed with FASD: A) Heatmap 

of significantly (p<0.005) differentially methylated targeted CpG sites generated using 

hierarchical clustering of standardized β-values from buccal epithelial DNA obtained via 

swabs from FASD (n=6) and matched control (n=5) children from the discovery cohort; 

B) Heatmap of significantly (p<0.005) differentially methylated targeted CpG sites 

generated using hierarchical clustering of standardized β-values from buccal epithelial 

DNA obtained via swab from FASD (n=6) and matched control (n=6) children from the 

replication sample.  
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3.4.1. Gene Network and Ontologies Associated with FASD 

Figure 3.2 shows the GeneMANIA network generated from the genes regulated 

by the 268 CpG sites that showed significantly (p<0.005) altered methylation in the 

discovery cohort. Among other genes it identified 11 sites that regulate the clustered 

protocadherins genes located on 5q31 (Figure 3.3). 

Next, the differentially methylated genes from the discovery cohort were used in 

an analysis towards identification of specific biological processes, functions, and 

pathways affected as a result of changes in methylation. The results (Table 3.2) show that 

the major biological processes affected include cell adhesion and nervous system 

development. There are alterations to relevant molecular functions including calcium ion 

binding and channel activity. The genes code for proteins localized to synaptic vesicles 

and the cytoskeleton. Notably, alterations to similar ontologies were observed in the gene 

expression data from the mouse model binge injection paradigms (Kleiber et al. 2013). 

There were also similar alterations to DNA methylation observed in the continuous 

preference drinking (CPD) paradigm presented in chapter 2 and those results are 

compared in chapter 4.  
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Figure 3.2. GeneMANIA associative network analysis of genes annotated to 

differentially methylated CpGs (p<0.005) from cheek swabs of the discovery cohort.  
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Figure 3.3. Manhattan plot of human chromosome 5 from the discovery cohort. Genomic location is plotted on the x-axis and –log10 

(p-value) of differential CpG methylation from FAE is on the y-axis (Manhattan plot). Each dot represents a single CpG site. A red dot 

indicates an increase in methylation and a blue dot indicates a decrease in methylation. A black arrow indicates the clustered 

protocadherin locus. 
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Table 3.2. Ontologies for genes with significant (p<0.005) differences in CpG 
methylation from the discovery cohort. 
Enrichr GO Biological Processes  Overlap p-value 

Homophilic cell adhesion via plasma membrane adhesion molecules (GO:0007156) 25/142 5.9E-24 

Cell-cell adhesion (GO:0098609) 26/191 2.5E-22 

Cell-cell adhesion via plasma-membrane adhesion molecules (GO:0098742) 26/190 2.2E-22 

Nervous system development (GO:0007399) 12/277 1.0E-05 

Replacement ossification (GO:0036075) 4/30 2.3E-04 

Endochondral ossification (GO:0001958) 4/30 2.3E-04 

Ossification (GO:0001503) 7/116 1.1E-04 

Osteoblast development (GO:0002076) 3/19 9.4E-04 

Vesicle localization (GO:0051648) 4/51 1.4E-03 
Calcium-dependent cell-cell adhesion via plasma membrane cell adhesion molecules 
(GO:0016339) 3/28 2.6E-03 

Enrichr GO Cellular Location Overlap p-value 

Cytoplasmic vesicle membrane (GO:0030659) 8/229 7.2E-04 

Cytoplasmic vesicle part (GO:0044433) 10/363 9.4E-04 

Vesicle membrane (GO:0012506) 8/249 1.2E-03 

Actin cytoskeleton (GO:0015629) 6/193 5.8E-03 

Z disc (GO:0030018) 4/87 6.5E-03 

Actin filament (GO:0005884) 3/44 6.6E-03 

Voltage-gated sodium channel complex (GO:0001518) 2/15 8.3E-03 

Sodium channel complex (GO:0034706) 2/18 1.1E-02 

Synaptic vesicle membrane (GO:0030672) 2/22 1.6E-02 

Integral component of plasma membrane (GO:0005887) 15/1066 2.9E-02 

Enrichr GO Molecular Function Overlap p-value 

Calcium ion binding (GO:0005509) 34/698 3.3E-15 

Solute:proton antiporter activity (GO:0015299) 3/17 8.4E-04 

Ion channel binding (GO:0044325) 5/80 1.3E-03 

Solute:cation antiporter activity (GO:0015298) 3/28 3.1E-03 

Monovalent cation:proton antiporter activity (GO:0005451) 2/10 5.5E-03 

3',5'-cyclic-GMP phosphodiesterase activity (GO:0047555) 2/11 6.5E-03 

Sodium ion transmembrane transporter activity (GO:0015081) 5/128 8.6E-03 

Ligand-dependent nuclear receptor transcription coactivator activity (GO:0030374) 3/46 1.1E-02 

Activating transcription factor binding (GO:0033613) 3/53 1.6E-02 

Fibroblast growth factor binding (GO:0017134) 2/20 1.8E-02 

Monovalent inorganic cation transmembrane transporter activity (GO:0015077) 8/343 1.8E-02 

Voltage-gated sodium channel activity (GO:0005248) 2/22 2.0E-02 

Cation:cation antiporter activity (GO:0015491) 2/22 2.1E-02 
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3.4.2. The Top Canonical Pathways are Related to 
Neurodevelopment and Neurotransmission  

The top canonical pathways (Table 3.3) of the significantly (p<0.05) altered CpGs 

identified are largely related to neurodevelopment as they are involved in stem cell 

signaling, synaptic connections, metabolism, and immune processes. Hippo signaling 

(Figure 3.4) had 25 out of 120 genes affected, which was the most significant enrichment 

(p=0.0002) in the pathway analysis. The glutamatergic synapse pathway (Figure 3.5) was 

the top synaptic pathway and showed a significant (p=0.001) enrichment with 18 out of 

77 genes showing significant (less stringent list, p<0.05) alterations to CpG methylation. 

Furthermore, there was a significant (p=0.005) alteration to the calcium signaling 

pathway (Figure 3.6) with 23 out of 102 genes affected. Notably, a number of synaptic 

pathways were enriched. The retrograde endocannabinoid signaling pathway (Figure 3.7) 

was significantly (p=0.006) altered with 16 out of 60 genes affected and the serotonergic 

synapse pathway (Figure 3.8) was significantly (p=0.009) altered with 16 out of 63 genes 

affected.  

The pathways presented in detail were selected due to their similarities to results 

from the mouse model (chapter 2). Also notable is the overlap of the human methylation 

results with alterations to gene expression observed in the mouse binge injection 

paradigms (Kleiber et al. 2013). In the trimester 1 exposure paradigm calcium signaling 

was altered. In the trimester 2 exposure paradigm serotonin receptor signaling was 

altered. In the trimester 3 exposure paradigm glutamate receptor signaling, retinoic acid-

mediated apoptosis, and circadian rhythm signaling were altered. Finally, a role for 

retrograde endocannabinoid signaling was also seen in the trimester 3 exposure model, 

where a miRNA and target receptor were reciprocally deregulated (Stringer et al. 2013).  
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Table 3.3. Pathway analysis for genes with significant (p<0.05) differences in CpG 

methylation from the discovery cohort. 

Partek KEGG Pathways Overlap  p-value 
Hippo signaling pathway 25/85 2.0E-04 
Other types of O-glycan biosynthesis 8/10 2.9E-04 
Phagosome 23/85 9.7E-04 
Glutamatergic synapse 18/59 1.1E-03 
HTLV-I infection 33/152 2.3E-03 
Calcium signaling pathway 23/99 5.1E-03 
Retrograde endocannabinoid signaling 16/60 6.2E-03 
Viral myocarditis 10/29 7.0E-03 
Viral carcinogenesis 23/104 8.4E-03 
Serotonergic synapse 16/63 9.2E-03 
Axon guidance 17/71 1.2E-02 
Allograft rejection 8/22 1.2E-02 
Cell adhesion molecules (CAMs) 18/78 1.3E-02 
Endocytosis 23/109 1.3E-02 
Lysine degradation 9/28 1.5E-02 
Graft-versus-host disease 8/23 1.5E-02 
Basal cell carcinoma 10/34 1.7E-02 
Type I diabetes mellitus 8/24 1.8E-02 
Fatty acid metabolism 7/20 2.1E-02 
Circadian entrainment 13/53 2.2E-02 
Autoimmune thyroid disease 8/27 3.0E-02 
Long-term depression 8/28 3.5E-02 
Focal adhesion 21/109 3.8E-02 
ECM-receptor interaction 11/46 3.9E-02 
Dorso-ventral axis formation 5/14 4.7E-02 
Cholinergic synapse 14/68 5.5E-02 
Apoptosis 10/44 6.1E-02 
Arrhythmogenic right ventricular cardiomyopathy (ARVC) 9/38 6.1E-02 
Wnt signaling pathway 16/83 6.4E-02 
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Figure 3.4. Genes in the hippo signaling pathway affected by altered CpG methylation in children from the discovery cohort. Genes 

were identified and then assembled as protein complexes. Green marks a decrease in methylation and potentially increased gene 

expression while red indicates a increase in methylation and potentially decreased gene expression. 
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Figure 3.5. Genes in the glutamatergic synapse pathway that were affected by altered CpG methylation in children from the discovery 

cohort. 
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Figure 3.6. Genes in the calcium signaling pathway that were affected by altered CpG methylation in children from the discovery 

cohort.
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Figure 3.7. Genes in the retrograde endocannabinoid signaling pathway that were 

affected by altered CpG methylation in children from the discovery cohort. A list of 

notable CpGs as well as related genes and functions is also presented. 
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Figure 3.8. Genes in the serotonergic synapse pathway that were affected by altered CpG methylation in children from the discovery 

cohort.
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3.4.3. Confirmation of the 450K Array by Pyrosequencing  

Next, microarray results were examined using an independent technology that 

does not depend on the matched controls for modeling. For this, probes with different 

performances from the carefully matched discovery cohort were chosen. First, one of two 

CpGs to pass multiple testing at the FDR filtering level in this relatively small cohort was 

chosen. The array analysis identified the enhancer of COLEC11 (FDR p=1.93x10-7). 

Pyrosequencing analysis of the affected CpG (cg15730644) in COLEC11 revealed a 

significant increase (p=0.002) with an average methylation of 94.2% in FASD compared 

to 79.8% in matched controls (Figure 3.9A). It also shows that all children affected with 

FASD consistently have higher methylation at this CpG site compared to their matched 

controls. The sequencing run also examined SNP rs182514706 (T>G) and found that it 

was not present in any members of either the exposed or control groups and thus would 

not interfere with the confidence in the performance of this probe.  

The next probe examined did not pass a FDR cut-off and is more representative of 

the gene list used for higher level analysis, including heatmaps, ontologies, and pathways. 

HTT (Huntington) is a hub gene involve in neurological disorders and showed a 1.5 fold 

increase (p=0.003) in methylation in FASD patients. In the mouse trimester 3 binge 

injection paradigm HTT showed a significant (p=0.001) 23% decrease in gene expression 

in adult brains. Pyrosequencing analysis of the affected CpG (cg26128129) revealed that 

the CpG in the enhancer of HTT shows a significant increase (p=0.001) with an average 

methylation of 87.6% in FASD and an average of 50.7% in matched controls (Figure 

3.9B). Interestingly, there is variation among the control samples as compared to the 

FASD patients. This CpG is known to contain a SNP [rs362313 (C>T)] that causes a loss 

of the CpG, as well as another SNP near the probe [rs147422679 A>G]; however, 

pyrosequencing confirmed neither SNP was present in any of the individuals examined. 

The available results support the suggestion that CpG specific DNA methylation is altered 

in the cheek swab DNA of children affected with FASD.  
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A)  

 

 

B)  

 

 
Figure 3.9. Pyrosequencing results for (A) COLEC11 and (B) HTT in the discovery 

cohort. Patient ID represents the individuals from the discovery cohort and the metrics 

represent percent methylation of the CpG from the sample. 
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3.4.4. Examination of Select Loci in the General Population  

An average of 10 FASD and 7 Control patients were analyzed across 23 genes 

(Table 3.4 and Appendix I). Chr12q24.3 showed a significant (p=0.036) decrease in 

methylation (FASD = 2.7±1.2, Control = 7.4±1.5) at CpG 24, while CpG #26 

(cg20313522) showed a trend (p=0.098) of decreased methylation (FASD = 2.7±1.3, 

Control = 8.5±3.0). COLEC11 showed a trend (p=0.056) of decreased methylation 

(FASD = 57.5±10.9, Control = 85.3±5.0) at cg15730644. Chr2q22.1 showed a trend 

(p=0.080) of decreased (FASD = 91.5±1.0, Control = 87.5±2.0) methylation at CpG 19, 

while CpG 20 (cg23885472) showed no significant (p=0.228) alteration. Chr10q26 

showed a trend (p=0.107) of increased (FASD = 85.4±4.2, Control = 71.7±7.3) 

methylation at cg03697076. The above 4 were loci were deemed informative across all 

individuals and used for follow-up pyrosequencing in more members from the general 

population. However, pyrosequencing analysis revealed no significant alterations once 

applied to more individuals (Table 3.5 and Appendix J).  
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Table 3.4. Summary of NGS panel results for an average of the same ten FASD and 

seven control patients from Owen Sound, Ontario that were analyzed across 23 genes.  

Gene Symbol CpG Mean FASD Mean Control p value  

ALPL 

CpG#-701 12.3±1.8 13.4±2.0 0.69 

CpG#-700 (cg10487998) 17.9±3.0 14.5±3.5 0.47 

AK3L CpG#95 (cg24049468) 19.6±2.3 21.4±2.6 0.60 

Chr1p21.3 

CpG#2 10.3±3.2 11.6±5.9 0.84 

CpG#3 49.2±6.2 59.7±7.8 0.30 

CpG#4 40.4±8.4 54.7±8.0 0.24 

CpG#5 (cg21436544) 41.0±5.6 52.8±7.3 0.21 

CpG#6 51.9±5.3 60.2±6.3 0.32 

C1orf110 

CpG#-68 (cg01450736) 66.7±5.3 71.8±1.9 0.43 

CpG#-67 11.8±6.3 16.4±6.4 0.62 

CpG#-66 83.3±4.4 86.4±1.3 0.55 

COLEC11 

CpG#602 (cg15730644) 57.5±10.9 85.3±5.0 0.06 

CpG#603 81.5±2.1 83.7±0.9 0.41 

CpG#604 (cg13811808) 90.9±2.2 93.0±0.6 0.46 

CpG#605 88.5±3.0 91.1±1.3 0.48 

Chr2q22.1 

CpG#19 91.5±1.0 87.5±2.0 0.08 

CpG#20 (cg23885472) 67.9±11.6 47.6±11.3 0.23 

LIMCH1 

CpG#79 (cg13578194) 18.6±5.1 11.3±3.1 0.26 

CpG#80 43.9±6.3 38.3±3.3 0.47 

CpG#81 61.6±4.3 62.4±3.7 0.90 

CpG#82 45.8±7.8 42.0±4.5 0.69 

Chr4q26 

CpG#6 60.8±7.4 60.1±4.9 0.94 

CpG#7 (cg04452203) 7.7±0.9 10.2±2.4 0.37 

NOTCH4  CpG #68 (cg17351927) 92.8±2.8 95.7±1.1 0.39 

RUNX2  CpG#-5 (cg05996042) 34.3±5.1 33.3±6.0 0.91 

GRB10  CpG#-322 34.7±2.3 32.0±3.5 0.51 
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CpG#-321 (cg10335798) 15.5±1.3 14.2±2.1 0.60 

ADARB2 

CpG#7041 92.4±1.3 91.3±1.0 0.54 

CpG#7042 93.3±0.9 90.5±2.0 0.18 

CpG#7043 95.2±0.9 94.4±0.5 0.48 

CpG#7044 84.2±1.4 82.9±2.0 0.59 

CpG#7045 86.8±1.1 84.4±2.6 0.40 

CpG#7046 68.0±3.2 68.4±3.0 0.94 

CpG#7047 (cg11270017) 50.7±6.4 53.2±5.6 0.78 

PHYH 

CpG#70 (cg19018267) 7.1±2.0 4.8±1.0 0.35 

CpG#71 10.2±2.4 11.0±3.4 0.84 

CpG#72 13.4±3.0 13.1±3.6 0.96 

CpG#73 7.2±1.5 5.9±2.0 0.64 

CpG#74 54.3±6.3 55.1±7.1 0.94 

Chr10q26 CpG#7 (cg03697076) 85.4±4.2 71.7±7.3 0.11 

FBXO3 
CpG #-52 (cg05237503) 48.7±11.3 59.3±8.4 0.48 

CpG #-51 90.1±2.8 93.7±0.9 0.27 

LMO2 CpG #177 (cg17408637) 18.0±4.7 26.2±5.3 0.28 

Chr12p12.3  CpG#7 (cg05694021) 14.4±2.5 16.9±2.9 0.53 

Chr12q24.31 

CpG#24 2.7±1.2 7.4±1.5 0.04 

CpG#25 0.7±0.4 1.5±1.1 0.53 

CpG#26 c(g20313522) 2.7±1.3 8.5±3.0 0.10 

CpG#27 13.7±4.6 29.5±10.0 0.18 

FAM106A 

CpG#31 87.8±5.0 85.2±2.8 0.67 

CpG#32  (cg17745575)  45.3±5.0 42.7±4.9 0.71 

KRT32  

CpG#-6 25.4±3.4 29.6±5.0 0.49 

CpG#-5 (cg25598400) 18.1±3.0 20.9±3.0 0.53 

CpG#-4 68.5±4.5 65.3±6.2 0.68 

UCKL1  

CpG#481 11.2±2.1 13.2±3.1 0.59 

CpG#482 (cg07507493) 13.9±2.2 14.9±3.7 0.82 

CpG#483 5.0±1.8 3.4±1.2 0.50 
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KRTAP27-1 

CpG#1 75.4±1.3 76.1±1.3 0.72 

CpG#2 93.8±0.9 93.4±1.3 0.82 

CpG#3 95.5±0.4 96.1±0.6 0.38 

CpG#4 (cg05809586) 62.6±10.0 58.6±14.7 0.82 

ChrXp11.4  CpG #32 (cg11868078) 11.7±2.9 18.5±4.5 0.21 

PCDHGA1  

CpG #1774 71.9±2.4 77.6±2.9 0.15 

CpG #1775 
 cg21915313 26.9±1.5 25.5±2.4 0.63 

CpG #1776 47.5±1.7 51.1±3.3 0.34 

CpG #1777 38.6±1.6 46.0±5.5 0.22 

CpG #1778 (cg01544213) 57.8±2.5 60.8±2.9 0.46 

CpG #1779 30.6±1.0 34.6±2.6 0.18 
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Table 3.5. Summary of pyrosequencing results from children representative of the 

general population of Owen Sound, Ontario.  

Gene 
and n CpG FASD Control p-value 

COLEC11 CpG#602 (cg1573064)4 87.4±3.2 88.7±1.7 0.38 

38 FASD CpG#603 60.3±2.3 57.5±2.2 0.20 
27 Control CpG#604 78.9±2.3 79.7±1.2 0.39 

  CpG#605 77.6±2.2 76.9±1.9 0.40 

PCDBH18 CpG#-5 (cg27086874) 16±2.2 19.9±5.7 0.23 

8 FASD CpG#-4 6.4±1.3 6.9±0.9 0.42 
4 Control CpG#-3 6.1±1.7 3.6±1.9 0.22 

  CpG#-2 9.4±1.6 4.3±2.5 0.06 
  CpG#-1 5.4±1.6 5.5±2.8 0.48 

HTT CpG#2310 (cg26128129) 75.6±7.7 63.3±6.1 0.12 

15 FASD CpG#2311 87±1.7 88±0.9 0.33 
12 Control CpG#2312 61±3.8 58.9±4.3 0.36 

  CpG#2313 27.9±2.6 26.9±4 0.41 

12q24.31 CpG#26 (cg20313522) 6.3±2.7 9.2±3 0.25 

11 FASD 
8 Control CpG#27 23.1±6.3 32.9±8.1 0.17 

10q26.12 
11 FASD 
8 Control 

CpG#7 (cg03697076) 80.1±4 70±7.8 0.12 

2q22.1 CpG#19 87.4±1.7 85.2±1.6 0.18 
11 FASD 
8 Control CpG#20 (cg23885472) 59.2±10.6 52.2±9.6 0.32 

Results presented overlap with those from Figure 3.9. 
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3.5. Discussion 

The results of the research in this chapter provide a methylomic profile (Figure 

3.1) of young children with FASD (Table 3.1). The genes identified are non-random as 

they have a number of interactions identified by an associative gene network analysis 

(Figure 3.2).  

3.5.1. Non-Random Genome-Wide Differential Methylation 

The ontologies (Table 3.2) and pathways (Table 3.3) identified are related to 

cellular and synaptic signaling, (neuro)development, immune processes, cell proliferation 

and differentiation, and also represent non-neuronal tissues such as the heart and kidneys. 

The analysis of human children has implicated a signaling pathway well-known to be 

altered by alcohol: the glutamatergic synapse (Figure 3.5). The results have also 

implicated the retrograde endocannabinoid signaling pathway (Figure 3.7), which is 

known to be deregulated by PAE (Basavarajappa 2015). Endocannabinoids are 

synthesized from the phospholipid membrane and are recognized by receptors that inhibit 

calcium channels and suppress the release of glutamate or GABA. The serotonergic 

synapse pathway was also deregulated (Figure 3.8). The aforementioned synaptic 

pathways all utilize calcium signaling (Figure 3.6), are specifically relevant to 

endophenotypes associated with FASD and related mental disabilities, and are an 

unexpected result of easily obtained buccal swabs.  

A novel pathway identified in the results is hippo signaling (Figure 3.4). Hippo 

signaling is known to restrain cell proliferation and promote apoptosis in differentiating 

epithelial cells (Saucedo & Edgar 2007). While hippo signaling has been primarily 

studied in Drosophila melanogaster, it has been translated to Mus musculus and Homo 

sapiens and identified as a highly conserved signaling pathway involved in the control of 

cell growth, proliferation, and migration as well as apoptosis and organ size control 

(Wang et al. 2009).  

Hippo signaling contains conserved families of signal responsive transcription co-

regulators that transduce cytoplasmic signals into a response of transcriptional regulation 

in the nucleus via kinase cascade (Wang et al. 2009). The hippo signaling components are 

expressed in many tissues and co-regulate transcriptional enhancer factors [(TEFs) or 
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transcription enhancer domain (TEAD) factors], runt-domain transcription factors 

(Runxs), peroxisome proliferator-activated receptor gamma (PPAR-γ), T-box 

transcription factor 5 (Tbx5), and several others. Notably, hippo signaling regulates the 

growth of niche stem cell precursors (Sarikaya & Extavour 2015) and has recently been 

linked to chromatin modification by recruiting a histone methyltransferase complex (Oh 

et al. 2014). It has also been shown to regulate Wnt/β-Catenin signaling (Varelas et al. 

2010).  

A transcription factor analysis was also utilized on all the identified genes (Chen 

et al. 2013). It revealed a significant (p<0.005) enrichment for CTCF insulator sites (Kim 

et al. 2007), which are involved in establishing chromatin domains and boundaries and 

result in a large-scale nuclear architecture that is specific to cell type. Another 

transcription factor enriched for was RAD21, which cooperates with pluripotency 

transcription factors, including CTCF, in the maintenance of embryonic stem cell identity 

(Nitzsche et al. 2011). CTCF is known to be the master regulator of the clustered 

protocadherins (Golan-Mashiach et al. 2012; Guo et al. 2012) where it influences 

complex DNA looping.  

The clustered protocadherins are located on 5q31 and showed a concerted increase 

in methylation (Figure 3.3). The protocadherins are trans-membrane proteins with repeats 

of the cadherin motif or the cadherin extracellular domain (Hirano & Takeichi 2012; 

Chen & Maniatis 2013). This domain contains a conserved Ca2+ binding sequence and the 

number of extracellular domains may vary across different cadherin molecules. The 

protocadherins function as cell adhesion molecules with immense isoform diversity that is 

used to create individual neuronal identities and allow for large-scale network formation 

via controlling synaptic interactions. An increase in methylation in some, most, or all 

gene promoters as observed in human FASD patients, is expected to reduce the isoform 

diversity, thus limiting brain function. The clustered protocadherins were also represented 

by many of the gene ontologies (Table 3.2). They have been implicated in a number of 

brain disorders with similar endophenotypes to FASD, such as autism spectrum disorders, 

bipolar disorder, and schizophrenia (Hirano & Takeichi 2012). The molecular functions 

of the clustered protocadherins are further discussed in chapter 4, where the human 

observations are compared to the mouse CPD PAE paradigm (chapter 2).  
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3.5.2. Comparison of Discovery and Replication Cohorts 

The replication cohort (R) included six patients (3-10 years old) and six matched 

controls (Table 3.1B) and their cheek swab DNA was used to generate genome-wide 

DNA methylation profiles (Figure 3.1B). They were recruited from the same clinic and 

diagnosed by the same Pediatrician (J. Kapalanga). However, the replication cohort was 

also much more heterogeneous compared to the discovery cohort with respect to sex, 

medication exposure, environment, and socioeconomic status. In order to compare the 

cohorts across batches a different pre-processing algorithm was selected: the subset-

quantile within array normalization (SWAN) algorithm (Maksimovic et al. 2012; Fortin et 

al. 2014) from the minifi (Aryee et al. 2014) bioconductor package. When the two cohorts 

were pre-processed separately by the Illumina algorithm or together with the SWAN 

algorithm, they produced genome-wide results that had similarities but were not identical 

to the discovery cohort. In general, there was decreased significance in the replication 

cohort and greater levels of variation. Despite these differences, the main similarities 

between the two cohorts were significant alterations in ontologies related to glutamate 

and the canonical glutamatergic synapse pathway. Additionally, there was a clustered 

protocadherin signal on the Manhattan plot, as well as replication of alterations to 

imprinted regions also seen in the mouse models and the discovery cohort.  

Next, the replication cohort was reanalyzed following removal of females and 

children on medication (Table 3.1B; R1 and R4). Also, four controls of the replication 

cohort were removed to better match age range and medical history. The selected scans 

were then pre-processed using the Illumina algorithm. Upon removal, the groups cluster 

much more closely and the signal is almost identical to what was observed in the 

discovery cohort. Glutamatergic synapses, cell-adhesion, neuroactive ligand receptor 

interactions, MAPK signaling, axon guidance, and a number of other pathways were all 

significant (p<0.005) even though the ranking of specific pathways varied slightly. The 

results argue that although DNA methylation is altered in patients with FASD, other 

factors, including sex, age, and medication history, may affect the final outcome. 

An independent group has also replicated some of this research (Laufer et al. 

2015). Portales-Casamar et al. published an examination of genome-wide DNA 

methylation patterns in the buccal epithelial cells of a Canadian cohort (Portales-Casamar 



 129 

et al. 2016). They compared 110 children with FASD to 96 control children between the 

ages of 5 to 18. In addition to utilizing the 450K array and pyrosequencing, a genotyping 

array was used to statistically correct for genetic background. Their analysis revealed 658 

differentially methylated CpGs with 41 of those showing a >5% change in methylation. 

They observed an enrichment for genes with functions related to neurodevelopment. 

Furthermore, there was an increase of methylation in multiple probes from the clustered 

protocadherins and also alterations to genomically imprinted regions, which included 

H19. Overall, their observations confirm key findings from both the mouse and human 

results presented in this thesis and expand them to a more diverse cohort. 

3.5.3. No Single Gene Examined Identifies FASD  

The differential methylation observed was not replicated when examined at select 

loci in a different cohort more representative of the general population (Tables 3.4 & 

3.5). While it is possible that the marks examined are simply not informative of PAE, 

there are also a number alternative possibilities that may account for the lack of 

replication. First, individual sequencing is a more practical approach for clinical use as a 

substantial change in methylation level at a biomarker locus would allow for the detection 

of exposure without the need for carefully matched controls. However, individual 

sequencing does not have the advantage of normalization of signal across matched 

samples and reference genes.  

These findings highlight the difficulty of expanding from the homogeneity of a 

small carefully matched group to that of the heterogeneous general population. In the 

follow-up pyrosequencing and NGS panel, FASD patients were more variable across a 

number of factors including age, sex, drug exposure, and family history of mental health 

disorders. The control patients were also in the clinic for a more heterogeneous mixture of 

acute and chronic medical problems, which involved medication in some cases. 

Ultimately, given the potential for variation across a number of factors, it appears that 

each case of FASD may be represented in the epigenome as a complex signature that is 

altered by other environmental factors. This large amount of heterogeneity would benefit 

from future experimentation with much larger sample sizes, which would provide added 
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statistical power. Furthermore, a regression could also be used to dissect the complex 

environmental interactions that shape the general population.  

One possible approach to dissect the heterogeneity of FASD would be to mirror 

an array discovery approach and machine learning strategy used to detect prenatal 

exposure to smoking. In this example, the cord blood from 1,062 newborn Norwegian 

children prenatally exposed to maternal smoking during the second trimester was 

analyzed on the 450K array, revealing 26 significantly altered CpGs that mapped to 10 

genes (Joubert et al. 2012). The genes distinctly altered had functions related to 

detoxification and development. A separate follow-up study utilized whole blood from an 

American cohort (of 531 children) that were 3-5 years old and analyzed the same 26 

CpGs using machine learning, where they found that 81% of the time they could predict 

prenatal exposure to smoking (Ladd-Acosta et al. 2016). The above examples suggest that 

larger sample sizes from interdisciplinary collaborative efforts increase statistical power. 

However, given that 19% of cases were not identified, there are still limitations to the 

approach of epigenetic epidemiology and the statistical approaches available need further 

improvement, in terms of both loci examined and computational analysis, if they are to 

properly model the heterogeneity of the human population and be used for public health 

decisions (Ramsay 2015). To further expand on this point, a massive meta-analysis of 

prenatal exposure to maternal smoking found that even a sustained and heavy exposure 

results in a 450K profile with only nominal significance when applied to different cohorts 

of older children with the same heavy prenatal exposure (Joubert et al. 2015). In the same 

study, moderate exposure to any level of smoking, which made up a larger amount of 

children, produced a much less distinct profile that wasn’t fully explored.   

Ultimately, it appears that pyrosequencing of single loci is not suitable for use as a 

diagnostic of FASD. Methodologies that allow for accurate, rapid, and inexpensive 

quantification of DNA methylation levels across multiple loci in a single sample will 

soon emerge. These future technologies could be used to further examine the sites 

identified, as well as those identified by deeper epigenome wide screens, in a larger 

number of samples that will allow for the dissection of the interaction of other 

environmental and inherited variables. The above future improvements and a deeper 

understanding of natural variation in the methylome may one day enable the possibility of 
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diagnosing FASD from buccal swabs. Furthermore, this insight into DNA methylation 

from buccal swabs would be particularly suited for use with other modern diagnostics 

(Reynolds et al. 2011; Portales-Casamar et al. 2015), such as eye movement recordings 

(Paolozza, Rasmussen, et al. 2014a; Paolozza, Rasmussen, et al. 2014b; Paolozza et al. 

2015), diffusion tensor imaging (Paolozza, Treit, et al. 2014), and/or a robotic virtual 

reality platform (Williams et al. 2014).  

3.5.4. Select Functions of Sequenced Genes 

The genes examined by pyrosequencing and the NGS panel have a number of 

functions that are biologically relevant to PAE. COLEC11 is involved in fundamental 

developmental processes and serves as a guidance cue for neural crest cell migration 

where aberrations are known to produce spectrum disorders with similar endophenotypes 

to FASD known as 3MC syndrome (Rooryck et al. 2011). This biomarker was one of the 

strongest performing on the 450K array and was also confirmed by pyrosequencing. In a 

group of patients with intellectual disability and normal molecular karyotype COLEC11, 

BLCAP, FAM50B, SHANK2, and GLI2 were identified as showing significant alterations 

to methylation in peripheral blood by the 450K and confirmed by pyrosequencing 

(Kolarova et al. 2015). Notably, a marker could not be found for general intellectual 

disability and thus an individual based approach was taken. The hypermethylation of 

COLEC11 was observed and confirmed in a single patient with a thin upper lip 

vermillion, long flat philtrum, moderate developmental delay, generalized epilepsy, 

cerebral movement disorder with ataxia, and blepharophimosis. The aforementioned 

endophenotypes overlap with FASD.  

Chr2q22.1 (Chr2:136120695-136120697) is a few kilobases downstream from 

CXCR4 (Chr2:136114349-136118165). CXCR-4 is involved in neurogenesis, both 

developmental and adult, where it has a role in neuronal guidance and is implicated in 

epilepsy (Bagri et al. 2002). Chr10q26 is inside WDR11-AS, the antisense transcript for 

WDR11. WDR11 is also known as bromodomain and WD repeat-containing protein 2. It 

is involved in human puberty and in mouse and zebrafish models was found to have a role 

in developmental neuroepithelial cell migration (Kim et al. 2010). Bromodomains 

recognize monoacetylated lysine and the WDR domain allows for protein interaction. 
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Members of this family are typically involved in cell cycle progression, signal 

transduction, apoptosis, and gene regulation. Chr12q24.31 (Chr12:124774899-

124774989) is close to numerous novel lncRNAs and SCARB1. SCARB1 functions as a 

receptor for high density lipoprotein, its well known for its role in cholesterol 

homeostasis, and could have a role for membrane and neurosteroid synthesis in neurons 

of the eye (Provost et al. 2003). 

Also, notable is ADARB2 an RNA editing enzyme involved in the post-

transcriptional A-to-I modification and is a process. RNA editing results in the 

recognition of the modified base (Inosine) as a Guanosine by cellular machinery. RNA 

editing is enriched in the brain at 5htr2c and Glur2, which are serotonin and glutamate 

receptors that are involved in neurological disorders (Li & Church 2013). In the mouse 

models, the snoRNA gene families Snord115 and Snord116 were markers of PAE in the 

brain across different exposure dose and timing (Laufer et al. 2013). SNORD115 is 

involved in the alternative splicing of 5HTR2C (Kishore & Stamm 2006). Editing of 

Glur2 by Adar2 alters calcium permeability and is involved in synaptic activity and drug 

addiction (Lomeli et al. 1994; Schmidt et al. 2014). 

3.5.5. Considerations for Future Research 

While this research generates a number results, there are also a number of 

considerations for future studies. Unsorted peripheral tissue contains DNA methylation 

patterns from a heterogeneous population of cells and is a limitation of studies that use 

whole blood. Saliva is comprised of both buccal epithelial cells and a variable level of 

leukocytes and microbes (Aps et al. 2002) that are minimized by using swabs of the check 

pouch as opposed to mouthwashes (Thiede et al. 2000). The above mentioned variations 

in cellular composition may have the potential to lead to spurious findings in some cases, 

as alterations can reflect a shift in cell type composition as opposed to specific epigenetic 

alteration (Souren et al. 2013). However, the buccal epithelium also shares a 

developmental connection to the brain via the ectoderm and has led to novel insights into 

the brain as it is an easily accessible peripheral tissue. Interestingly, studies have 

indicated that the unsorted saliva appears to serve as a better proxy for the psychiatric 

disorders than unsorted blood (Lowe et al. 2013; Abdolmaleky et al. 2014; Wilmot et al. 
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2015). While cell type sorting is an ideal standard it is not always practical, particularly in 

cases where low amounts of DNA available and thus is a limitation to be considered 

when interpreting the results presented. Furthermore, a study using a similar approach to 

examine autism spectrum disorders noted that technical inter-array differences accounted 

for the majority of confounding variation, even after the use of stringent pre-processing 

algorithms to adjust for batch effects (Berko et al. 2014). The two arrays in this chapter 

showed a similar outcome and were analyzed separately to minimize the major source of 

confounding variation.  

3.5.6. Conclusion 

In this research, it was observed that children (3-6 year olds) with a 

comprehensive FASD diagnosis and a maternal history of PAE (termed the discovery 

cohort) have non-random differences in genome-wide DNA methylation. This effect is 

similar, but not identical, in a replication cohort collected 6 months after. The analysis 

allowed for the identification of the clustered protocadherins as well as glutamate and 

hippo signaling proteins as critical molecules. These results may also explain overlaps 

involving FASD and other neurodevelopmental disorders of unknown etiology. However, 

these associations were observed in a small sample of carefully matched children and 

next generation sodium bisulfite sequencing of a larger sample suggests that the selected 

differences may be influenced by sex, age, medication, and genetic background. 

Ultimately, the results establish that DNA methylation is affected at specific 

neurodevelopmental loci in children with FASD but may be altered by other variables.  

Thus, despite the potential caveats, the results included have a number of 

implications. First, the identification of specific loci and pathways, including the clustered 

protocadherins and hippo signaling, may serve as a foundation for functional genomics 

studies. Second, with future optimization, the methylomic profile may serve as part of a 

diagnostic suite that enables early diagnosis and proper application of any corrective 

therapies, which are most effective for FASD if applied as early as possible during 

neurodevelopment (Paley & O’Connor 2009; Chokroborty-Hoque et al. 2014). The 

identified loci may also be utilized towards the development of precision medicine by 

somatic epigenome editing (Laufer & Singh 2015). Finally, the results of this research 
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established that a complex epigenomic signature of PAE remains in the saliva of human 

children. 

 

Footnotes: A substantially modified portion of this chapter has been published (Laufer et 

al. 2015). 
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Chapter 4 

Comparison of PAE Mice and Humans 

4.1 Overview 

The results presented in this thesis represent a number of novel observations. The 

mouse model (chapter 2) revealed that long-term alterations to DNA methylation as well 

as non-coding RNA and gene expression are induced by prenatal alcohol exposure (PAE) 

in the brain. Observations of saliva (chapter 3) show that there is a heterogeneous profile 

of non-random differential DNA methylation characteristic of young children with Fetal 

Alcohol Spectrum Disorders (FASD). In this chapter, I highlight that there are some 

comparable alterations in DNA methylation between the brains of adult male mice and 

the buccal epithelium of human children. A portion of this chapter has been previously 

published in Laufer et al. 2015. Together, the results of this research suggest that while 

different genes are altered, a long-term profile exists in diverse cell types with an 

ontogenetic relationship stemming from the ectoderm. The candidate loci identified in the 

two species belong to related non-random ontologies and pathways as well as complex 

epigenetically regulated syntenic loci. The results of this research may be used to guide 

future functional genomics studies examining the development of FASD following PAE. 

The novel results are also expected to aid the future development of strategies for early 

diagnosis and protocols for amelioration. 

4.2  Introduction  

The mouse model results presented in chapter 2 are in agreement with research 

using human cells. For example, Khalid et al. examined the transcriptome and methylome 

of human embryonic stem cells (hESCs) exposed to alcohol (Khalid et al. 2014). The top 

deregulated hub genes were SCUBE3 and SLC22A5, which showed decreased gene 

expression. Notably, SLC22A5 was ranked as the 3rd gene showing the highest differential 

hyper-methylation in the mouse model presented in this thesis. The SLC22A5 gene codes 

for a solute carrier protein (OCTN2) that has a role in TGF-β signaling and transports 
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carnitine, which is involved in transporting fatty acids from the cytosol to the 

mitochondrial matrix, where they can be used for metabolism (Sonne et al. 2012). 

SCUBE3 also codes for a protein that has a number of functions, which include TGF-β 

signaling and the complement system (Yang et al. 2013). In the analysis of gene 

expression in the mouse model, the complement system was the top deregulated 

canonical pathway and also enriched in the gene ontology analysis. Finally, as noted by 

Khalid et al., the two hub genes identified are expressed in a number of non-neuronal 

tissues including the heart. These similarities highlight the translational potential of the 

PAE mouse model, which I used as a comparison point for the observations from human 

children with FASD.  

The experiments involving mice were based on a MeDIP-Chip tilling array that 

analyzes CpG islands with greater than 2 methylated cytosines per a 50-75 base pair 

probe, which are then tilled into a larger contiguous sequence to represent a differentially 

methylated region (DMR) (Figure 2.7) (Laufer et al. 2013). For the human analysis, the 

450K methylation array was used to analyze alterations to single CpG sites via sodium 

bisulfite conversion and an (epi)genotyping approach (Figure 3.1A) (Laufer et al. 2015). 

The translational comparison of results allowed for the identification of specific 

ontologies, pathways, and loci that are concordant between the independent array sets, 

which may be further developed as robust biomarkers of PAE. 

4.3 Methods 

The mouse model results are described in chapter 2. Briefly, the updated (2016) 

methylation analysis was used for the comparison of ontologies and pathways, as this 

analysis was generated using a workflow more similar to the human results and thus 

allowed for a more direct comparison. However, the updated analysis is from software 

with limited support for the array, which did not provide complete genomic location 

annotations for the tiled sequence, and thus the original (2012) methylation analysis was 

used for comparative alignment. The analysis of the human observations is described in 

chapter 3. The observations from the discovery cohort were used for the comparison to 

mice. Alignment of reference genomes for both species was carried out using the UCSC 

genome browser (www.genome.ucsc.edu). 
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4.4 Results  

Of the 190 CpGs from the human discovery cohort that were annotated to genes, 

36 (19%) overlapped with the 2898 annotated genes identified from the updated 2016 

mouse analysis. However, the ontologies and pathways identified in the human discovery 

cohort (Tables 3.2 & 3.3) are similar to those identified in adult PAE mouse brains 

(Tables 2.7 & 2.8) and related to cellular and synaptic signaling, (neuro)development, 

immune processes, cell proliferation and differentiation, and also represent non-neuronal 

tissues such as the heart and kidneys. The observations represent a number of diverse 

ontogenetic events that are altered long after their initial deregulation by PAE. The most 

common and clearly connected are cellular signaling events related to development and 

neurotransmission, which are responsive to the external environment. For instance, the 

top pathway identified in the human results was hippo signaling (Table 3.3; 25/85 

molecules and p=0.0002), which was also altered in the mouse model (Table 2.8; 40/115 

molecules and p=0.04). Calcium signaling was also altered in the children’s swabs (Table 

3.3; 99/475 molecules, p=0.005) and mouse brains (Table 2.8; 50/136 molecules, 

p=0.01). Calcium signaling has numerous diverse roles, including in neurotransmission, 

where it contributes to depolarization of the cell membrane and resulting action 

potentials. Also notable are the only two genes that passed the FDR filtering on the 450K 

array. Both showed increased methylation, and AHNAK2 was 1.7 fold (p=1.93E-07) and 

COLEC11 was 1.6 fold (p=6.61E-08) (Appendix D). AHNAK2 is a type of giant 

propeller-like protein linked to calcium channels (Komuro et al. 2004). COLEC11 

encodes a guidance cue for neural crest migration (Rooryck et al. 2011). The CL-K1 

protein encoded by COLEC11 is part of the lectin complement pathway, which functions 

in complement activation (Wallis et al. 2010), an immune process represented in the 

ontologies and as the top pathway of mouse gene expression (Table 2.2). 

The comparison of mouse and human results has enabled the identification of not 

only ontologies and pathways deregulated by PAE, but also genomic loci. Some genes 

showing differential methylation in children belonged to genes families with altered 

methylation in mice [PHOX2B (p=0.0009), ADAMTS17 (p=0.002), KRT32 (p=0.004), 

TMEM229A (p=0.004)]. As another example, complex epigenetically regulated syntenic 

loci were also identified in both mice and humans. Alterations to imprinted ncRNA from 
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the SNRPN-UBE3A locus [SNORD116 (HBII-85) (p<0.005) and SNORD115 (HBII-52) 

(p<0.01)] were also present in the human buccal DNA, which was the most ubiquitously 

expressed marker for PAE that was identified in the mouse model chapter of this thesis 

(Appendix D). SNORD115 changes the alternative splicing of the serotonin receptor 

5HTR2C (Kishore & Stamm 2006; Glatt-Deeley et al. 2010), which is a G-protein 

coupled receptor involved in calcium signaling (Nakatani et al. 2009). Calcium signaling 

was deregulated in both the mouse model and human model, and the serotonergic synapse 

pathway was altered in human children (Table 3.3).  

4.4.1   Increased Methylation at the Clustered Protocadherins 

In both humans with FASD and PAE mice, the clustered protocadherins showed a 

broad increase in methylation at select regions (Figure 4.1). An increase in methylation 

in some, most, or all gene promoters (Tables 4.1 & 4.2) is expected to reduce the isoform 

diversity, thus restraining brain function. Table 4.1 contains a list of genes, genomic 

position, and the functional CpG site that is differentially methylated in the buccal swabs 

of FASD patients from the discovery cohort as compared to their matched controls. 

Similarly, Table 4.2 contains corresponding protocadherin genes that were differentially 

methylated in adult mouse brains long after PAE. Figure 4.1A includes a plot of the raw 

Illumina β values, which correspond to percent methylation, for significant (p<0.005) 

CpGs in the differentially methylated region of the protocadherin γ cluster of humans and 

also how they align with alternate transcripts choice. The differential methylation appears 

to correspond to the first variable exon and preceding promoter of an alternative 

transcript. Protocadherins are involved in the generation of synaptic complexity in the 

developing brain and evolved primarily by tandem duplications and divergence. This 

complex locus contains three clusters (α, β, and γ) of protocadherin gene families that are 

transcriptionally complex and very similar between humans and mice (Figure 4.1B). The 

clustered protocadherin locus generates comparable transcripts in the two species and has 

relatively conserved CpG sites. More importantly, a number of the CpG sites/islands are 

specifically prone to increased methylation following PAE in both species. 
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Table 4.1. Nucleotide-specific analysis of CpGs in the protocadherin gene family clusters 

showing significant (p<0.005) alterations to CpG methylation in human buccal epithelial 

DNA from children of the discovery sample. 

Family p-value  CpG ID CpG 
Coordinate 

Fold 
Change Average β  

α 2.24E-03 cg03318614 140154796 1.10 0.55 
α 4.90E-03 cg16234335 140168303 1.11 0.60 
α 4.07E-03 cg25225155 140202437 1.23 0.64 
α 4.42E-04 cg15122993 140236606 1.17 0.49 
α 3.79E-03 cg13619597 140237001 1.54 0.68 
β 1.90E-03 cg27086874 140549040 1.14 0.19 
β  1.99E-03 cg05941060 140594004 1.43 0.46 
γ  1.37E-03 cg01561869 140704042 1.22 0.29 
γ  8.85E-04 cg25657261 140705331 1.34 0.33 
γ  6.14E-05 cg24922090 140720687 1.24 0.37 
γ  3.24E-03 cg02074191 140731690 1.60 0.46 
γ  1.36E-04 cg06757405 140731792 1.35 0.35 
γ  4.86E-03 cg26856475 140734108 1.38 0.42 
γ  1.08E-03 cg22087053 140734498 1.27 0.35 
γ  8.46E-04 cg18297751 140749183 1.31 0.39 
γ  4.98E-03 cg24633027 140752470 1.32 0.55 
γ  6.18E-04 cg18705909 140754610 1.58 0.45 
γ  4.41E-03 cg08854987 140759645 1.26 0.34 
γ  4.36E-04 cg21117330 140769634 1.20 0.28 
γ  8.56E-04 cg03831054 140769892 1.53 0.48 
γ  8.64E-04 cg21915313 140779155 1.50 0.39 
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Table 4.2. Tiling-based analysis of promoters from the protocadherin gene clusters 

showing significant (p<0.01) increases in methylation in adult brain tissue from a mouse 

model of prenatal alcohol exposure. 

Family Peak Start Peak End Peak 
Length 

α 37090887 37091731 844 
α 37099823 37099982 159 
α 37100493 37101082 589 
α 37120628 37121169 541 
α 37121813 37122462 649 
α 37128647 37129396 749 
α 37148470 37149114 644 
α 37153966 37154515 549 
α 37159353 37160304 951 
α 37166096 37167215 1119 
α 37181780 37182430 650 
β 37456114 37456763 649 
β 37603162 37603321 159 
β 37645176 37646223 1047 
β 37657621 37657881 260 
β 37674825 37674994 169 
β 37678546 37679275 729 
γ 37828934 37831185 2251 
γ 37835333 37836297 964 
γ 37840948 37841597 649 
γ 37850740 37850974 234 
γ 37854441 37854897 456 
γ 37868606 37868955 349 
γ 37886555 37887889 1334 
γ 37892011 37893005 994 
γ 37922706 37922835 129 

Data based on the original 2012 analysis.  
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Figure 4.1. Broad profile of increased methylation at the clustered protocadherins in 

children with FASD and PAE mice: (A) Representative methylation patterns in 14 CpGs 

of the gamma cluster in the discovery cohort. Red represents children with FASD and 

blue represents matched controls. (B) Significantly (p<0.005) increased methylation in 

the clustered protocadherin region of patients (red dots), known CpG island (green dots) 

and potential transcripts (blue lines) along with their similarity to the mouse model 

(p<0.01). Figure is not to scale as non-informative regions have been removed for clarity.  
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4.5 Discussion 

The similarities between mice and humans are striking because the arrays are 

designed to investigate different regulatory sequences: the mouse arrays are tiled regions 

of larger change in CpG islands, whereas the human arrays are focused on single CpG 

sites that could be in a CpG island shore/shelf and up to 2 kilobases away from the 

corresponding island (Yasui et al. 2007; Irizarry et al. 2009; Doi et al. 2009). Although, 

some CpG islands are represented on the human array, as exemplified by the clustered 

protocadherins. Thus, the clustered protocadherin signal is a more direct comparison.  

While some of the results may not appear related, most can be connected 

parsimoniously. For example, the enrichment for cancer pathways is related to 

developmental events. Many cancers have been redefined as disorders of the epigenome 

that stem from epigenetic alterations related to stem-cell programming pathways used in 

development (Feinberg et al. 2006; Feinberg et al. 2016).  These results are presumably 

present due to a larger focus from the research community on cancer rather than 

development. There are also alterations to genes involved in immune events, which 

suggest that some alterations may be occurring in glia as well. For instance, microglia 

induce apoptosis in stressed-but-viable neurons by phagocytosis, which is signaled for by 

complement components (Brown & Neher 2014). The complement system was 

implicated in both mouse (Table 2.2) and human (COLEC11) results, and differential 

methylation of phagocytosis related genes was observed in both mice (Table 2.8) and 

children (Table 3.3). The above example also suggests that the long-term profile informs 

on not only past alterations to the epigenome, but also active differences in transcription. 

However, the most striking shared signature was the preferential methylation of the 

clustered protocadherins, which is similar in mice and children.   

4.5.1   Functions of the Clustered Protocadherins  

The increased methylation of protocadherin genes from the cheek swab DNA of 

FASD patients is supported by comparable results in the brains of adult mice prenatally 

exposed to alcohol (Figure 4.1B). These results have the potential to cause a down-

regulation of specific gene products depending on the specificity of methylated promoters 

in neural cells of mice as well as humans. Notably, a number of exposure paradigms in 
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the previously developed mouse model showed alterations to clustered protocadherin 

gene expression. Pcdhb2 was down-regulated (1.2 fold, p=0.02) in the voluntary maternal 

continuous preference drinking (CPD) PAE paradigm. Pcdhb3 was up-regulated (1.2 fold 

change, p=0.005) in the trimester 1 (T1) binge exposure paradigm, while Pcdhb7, 

Pcdh15, Pcdhb11, Pcdhb16, and Pcdhb18 were down-regulated (~1.3 fold, p<0.003) 

(Kleiber et al. 2013). In the trimester 3 (T3) exposure paradigm Pcdhb18 showed a 21% 

increase after acute exposure and 43% decrease in adult brain gene expression (Kleiber et 

al. 2013). Furthermore, such changes are expected to affect function because Pcdhb18 has 

been demonstrated to control axon growth and arborization in zebrafish (Biswas et al. 

2014). Finally, the clustered protocadherins also showed increased histone methylation in 

the hippocampus of adult PAE mice from the T3 binge exposure paradigm (Chater-Diehl 

et al. 2016). Both (activating) H3K4me3 and (repressive) H3K27me3 were increased. 

While the enriched histone post-translational modifications typically act in opposing 

fashions, this enrichment may also represent bivalent chromatin, which allows for genes 

silenced in embryonic stem cells to be poised for later activation during differentiation 

(Bernstein et al. 2006; Vastenhouw & Schier 2012). Finally, some of the clustered 

protocadherins are proteolytically processed by the metalloprotease ADAM10, which 

releases an extracellular fragment for signaling (Reiss et al. 2006). ADAM10 and number 

of other ADAM(S) genes showed differential methylation in the mouse model. Thus, the 

mouse models provide further support for the existence of a complex epigenetic signature 

in the clustered protocadherins that is associated with PAE.  

The protocadherins are the largest subgroup of the cadherin gene superfamily of 

homophilic cell-adhesion proteins (Hirano & Takeichi 2012; Chen & Maniatis 2013). 

They are primarily expressed in the developing nervous system where they are 

stochastically involved in a neuronal self-avoidance that allows neurons to interact with 

the same neuronal subtype but not themselves (Sano et al. 1993). Protocadherins have 

been observed mediating cell-to-cell interactions in dendrites, axons, synapses, growth 

cones, and neuronal soma (Kohmura et al. 1998; Wang et al. 2002; Kallenbach et al. 

2003; Phillips et al. 2003; Junghans et al. 2008; Lefebvre et al. 2012; Chen et al. 2013). In 

vertebrates, the majority of protocadherin genes are organized in 3 clusters: α, β, and γ. 

Intriguingly, the cell specific variation in transcripts created by this locus parallels the 
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complexity of the immune system. Unlike the immune system, which relies on genetic 

recombination, the protocadherin complexity is realized by epigenetic mechanisms that 

parallel the act of recombination via promoter choice and splicing. The transcriptional 

initiation of the α and γ families is dependent on the methylation status of numerous 

promoters in the variable regions of the families that end in shared exons. β, on the other 

hand, does not contain a shared exon and each gene appears to be under the control of its 

own promoter. The α and γ gene families contain CTCF binding sites that families form a 

DNA loop structure, which is proposed to bring the isoform specific promoters into the 

proximity of flanking enhancers and transcriptional machinery (Guo et al. 2012; Golan-

Mashiach et al. 2012; Chen & Maniatis 2013; Guo et al. 2015). This allows stochastic 

expression of several different alternative isoforms from each chromosome, while also 

enabling both chromosomes to express constitutive isoforms.  Thus, it appears that CTCF 

serves as a master transcription factor for this locus and is used to determine the isoform 

expression of protocadherins (Figure 4.2). Furthermore, stochastic isoform expression 

from the α cluster is dependent on epigenetic priming by de novo methylation patterns 

established at promoters by Dnmt3b during early embryonic stages, which goes on to 

influence isoform expression in subsequent differentiated cells (Toyoda et al. 2014). 

The isoform diversity created by the clustered protocadherins creates a molecular 

signature on the cell surface of individual neurons that is used to interact in trans (Chen et 

al. 2013). This diversity is accomplished by individual neurons expressing different 

combinations of the protocadherin isoforms on their cell surface and forms even more 

diversity by creating multimers (in cis). Ultimately, each neuron could have its own 

unique identity amongst other individuals of the same subtype (Bonn et al. 2007; 

Schreiner & Weiner 2010). This is believed to be critical for the specific and yet 

enormous network formation of precise neuronal connections required for 

neurodevelopment.  

The clustered protocadherins function in neurite self-avoidance (Lefebvre et al. 

2012), dendritic patterning (Suo et al. 2012), and axonal projection (Katori et al. 2009). 

Given their essential role underlying neurodevelopment, it comes as no surprise that the 

protocadherin gene family clusters have been implicated in a number of 

neurodevelopmental disorders (Kalmady & Venkatasubramanian 2009). Furthermore, 
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DNA methylation of the clustered protocadherins is known to be environmentally 

responsive. A broad profile of increases and decreases in DNA methylation, H3K9 

acetylation, and gene expression in the hippocampus of the rat revealed that the clustered 

protocadherins show the largest differential response in adult offspring that received 

altered maternal care (McGowan et al. 2011). A further comparison to the hippocampus 

of humans that were abused as children revealed increased methylation in promoters of 

the clustered protocadherin locus (Suderman et al. 2012). It is notable that the mouse and 

human results of this thesis displayed a profile more similar to humans who were abused 

as children, rather than the rodent model of altered maternal care that contained both 

increases and decreases in methylation. Finally, increased methylation and decreased 

expression of the γ protocadherins has been observed in fetal Down syndrome cortex 

(Hajj et al. 2016).  
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Figure 4.2. A hypothetical model of gene regulation by CTCF at the clustered 

protocadherin locus. DNA looping mediated by CTCF/Cohesin may regulate gene 

expression by bringing alternative promoters of select clustered protocadherins into the 

proximity of enhancers and transcriptional machinery. 
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4.5.2   Conclusion 
The comparison of changes to DNA methylation following PAE shows that there 

are similarities between the buccal epithelium of children with FASD and the whole 

brains of PAE adult mice. The similarities typically do not occur in the same genes but 

are evidenced by alterations to similar ontologies and pathways. These alterations to 

methylation occur in genes with functions related to cellular and synaptic signaling, 

(neuro)development, the cell cycle, immune processes, and genomic imprinting (SNORD 

115 & SNORD 116). Furthermore, there is a broad profile of increased methylation at the 

clustered protocadherins in PAE mice and human children. The similarities observed 

come from functionally diverse tissues that share a stem cell progenitor and suggest an 

ontogenetic footprint of PAE is maintained by the epigenome. Thus, the findings 

demonstrate that for translational human studies, rodent models may be used as a 

reference point to help decipher the complex signature of select life experiences amongst 

the epigenetic variation that shapes every individual.  

 

Footnote 

A modified portion of this chapter has been published (Laufer et al. 2015).  
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Chapter 5 

Discussion 

5.1 Overview 

The research presented in this thesis has identified differential DNA methylation 

in prenatal alcohol exposed (PAE) mice (chapter 2) and in children with fetal alcohol 

spectrum disorders (FASD) (chapter 3). The mouse results revealed alterations to gene 

and non-coding RNA (ncRNA) expression as well as DNA methylation in adult whole 

brains. The human observations revealed alterations to DNA methylation from the buccal 

swabs of children with FASD. When the mouse and human results are compared (chapter 

4) they show that many alterations occur in genes involved in the same ontologies and 

pathways. Furthermore, the comparison of alterations has also allowed for the 

identification of increased methylation in the clustered protocadherins. In this chapter the 

results of these studies are synthesized and collectively show that the long-term 

alterations from PAE represent a ‘footprint’ of cellular signaling events altered at the time 

of exposure. The results of this thesis also offer a number of considerations for future 

epigenomic research.  

5.2 Towards an Inductive Mechanism: PAE Alters Cellular 
Signaling 

The mechanisms that initiate the altered long-term profile of PAE remain 

unknown. While the systems biology approaches used in this thesis are suited for 

discovery, they are not mechanistic and offer only an assessment of the downstream 

effect. Although the mechanism initiating the long-term profile was not directly 

examined, the results overlap with literature investigating PAE at the time of exposure.   

The pleiotropic effects of ethanol appear to be derived from its ability to alter a 

number of developmental cellular signaling pathways and a preferential effect on certain 

multipotent cell types that later undergo coordinated apoptosis (Kiecker 2016). For 

instance, cell fate and migration depends on signaling pathways with cell surface 
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receptors that activate downstream transcriptional programming. Examples of these 

signaling pathways are bone morphogenic protein (BMP)/transforming growth factor-β 

(TGFβ)/, PI3K/AKT/mTOR, Wnt/β-catenin, retinoic acid/Hox genes, Delta/Notch, SHH 

signaling, and MAPK/ERK (Kandel et al. 2000; Lamouille et al. 2014). Notably, 

members from a number of these pathways have been found to show altered gene 

expression and epigenetic marks in PAE mice across development (Green et al. 2007; 

Resendiz et al. 2014). The neural crest is a stem cell population that appears to be 

particularly impacted by PAE (Smith, Garic, Flentke, et al. 2014). Apoptosis of neural 

crest cells is driven by elevated reactive oxygen species (ROS) and the binding of alcohol 

to a G-protein-coupled receptor (GPCR). The activation of GPCRs by ethanol results in 

the release of phosphoinosityl phosphate, which triggers the release of intracellular 

calcium. This calcium transient prevents β-catenin from activating transcription related to 

trophic support and cell adhesion, which ultimately results in apoptosis (Smith, Garic, 

Berres, et al. 2014). 

Ethanol acts directly on neurotransmitter system receptors including 

neuropeptides, amino acids, biogenic amines, and others (Valenzuela et al. 2011; 

Basavarajappa 2015). Ionotropic receptors are part of a channel pore whereas 

metabotropic receptors result in signal transduction by secondary messengers and are 

often GPCRs (Bear et al. 2007). PAE alters a number of neurotransmitter systems but 

appears to primarily interfere with synaptic signaling involving amino acids and biogenic 

amines (serotonin and dopamine) (Valenzuela et al. 2011). γ-aminobutyric acid (GABA) 

is the main inhibitory neurotransmitter, while the amino acid glutamate is the most 

abundant excitatory neurotransmitter. Ethanol has been shown to directly bind to an 

allosteric site on the GABAA receptor, which is an ionotropic receptor for a ligand-gated 

ion channel, and increases the inhibitory effect (Santhakumar et al. 2007). Ethanol also 

binds to an allosteric site on the N-methyl-D-aspartate receptor (NMDAR), which is a 

glutamate receptor subtype, and inhibits excitatory function (Möykkynen & Korpi 2012). 

Neurotransmitter systems are extensively utilized throughout development. Even before 

synapses are formed, both glutamate and GABA regulate the migration, proliferation, and 

differentiation of neural stem cells (Manent & Represa 2007; Valenzuela et al. 2011). 

Both GABA and glutamate encourage the migration of cortical neurons across the 
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different layers of a developing embryo’s cortex as they pattern it in an inside first, 

outside last fashion (Luhmann et al. 2015). When GABA or glutamate receptors are 

activated they trigger calcium transients that remodel the cytoskeleton and result in 

cellular migration (Luhmann et al. 2015). In neonatal rats, which are the equivalent of the 

third trimester of human pregnancy, both acute and repeated PAE inhibits the long-term 

potentiation and thus maturation of GABAA receptor synapses by temporarily inhibiting 

L-type voltage-gated calcium channels (Zucca & Valenzuela 2010; Morton & Fernando 

Valenzuela 2016). These channels result in calcium transients in response to action 

potentials and are involved in the retrograde release of BDNF (Zucca & Valenzuela 2010; 

Morton & Fernando Valenzuela 2016). Notably, GABA has an excitatory function that 

encourages neuronal growth, migration, and synaptogenesis until the end of the rodent 

equivalent of the third trimester of human pregnancy (Ben-Ari 2002; Valenzuela et al. 

2011). Furthermore, glutamate is involved in synaptogenesis and the maturation of 

neurons (Cline & Haas 2008; Valenzuela et al. 2011). Overall, PAE appears to alter the 

epigenetic remodeling of embryonic stem cells, neural progenitor cells, and maturing 

neurons by interfering with a number of cell-adhesion, synpatogenic, and 

neurotransmission systems (Resendiz et al. 2014). However, PAE also alters other 

signaling systems upon exposure.  

The oxidation of ethanol by alcohol dehydrogenase results in acetaldehyde. 

Acetaldehyde is more toxic than ethanol and creates an abundance of ROS, which induce 

oxidative stress (Brocardo et al. 2011). ROS are signaling molecules critical for proper 

neurodevelopment and a number of cell signaling pathways. One example of a redox 

sensitive pathway is phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of 

rapamycin (mTOR) signaling, where the antagonist, PTEN, can be inactivated by 

oxidation (Ostrakhovitch & Semenikhin 2013). The PI3K/AKT/mTOR pathway is an 

intracellular signaling pathway that regulates the cell cycle and thus proliferation and 

apoptosis. When activated by growth factors binding to various GPCRs and tyrosine 

kinase receptors at the cell surface, PI3K phosphorylates phosphatidylinositol on the cell 

membrane and signals for the activation of AKT. AKT then activates mTOR, inhibits 

FoxO, and regulates a number of transcription factors to ultimately prevent cell death and 

promote cell survival (Brunet et al. 2001). However, PTEN inhibits PI3K and therefore 
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promotes apoptosis. In neural stem cells PI3K/AKT/mTOR promotes cell proliferation, 

whereas PTEN promotes cell differentiation. Neural stem cells utilize PI3K/AKT/mTOR 

signaling to carefully balance maintaining a stem cell pool while also providing enough 

differentiated cells, which can no longer proliferate (Peltier et al. 2007). 

PI3K/AKT/mTOR signaling is also required for the strengthening of synaptic 

connections, which is known as long-term potentiation and is the basis for learning and 

memory (Man et al. 2003; Sui et al. 2008). Overall, the long-term profile of PAE 

observed in both mice and humans contains many members of the above signaling 

pathways and suggests that their disruption is maintained as an ‘ontogenetic footprint’.  

5.2.1    Alternative Hypotheses  

The results suggest that a shared stem cell precursor connects the observations in 

whole brains and buccal swab DNA. However, there are also a number of possible 

alternative explanations to the observed footprint. First, the differential epigenomics 

observed may represent alterations to cell populations as well as alterations to epigenetic 

marks. This would explain some of the genome-wide alterations, as they could be related 

to cellular profile; however, the cell line studies reviewed in the introduction of this thesis 

also establish that genome-wide alterations occur in homogenous populations. Second, 

not all the observed alterations are connected ontogenetically at the level of the ectoderm. 

There also appears to be a preferential disturbance of cells dependent on calcium 

signaling, such as the brain, heart, kidneys, and skeletal structures. Third, and perhaps 

most likely, is that footprint is a combination of the above possibilities.  

5.3 Considerations for Future Experimentation  

The field of epigenomics is rapidly advancing, however, as a discipline a number 

of limitations must be overcome. These challenges are highlighted by the approaches 

used in this thesis and represent important considerations for future research. They are as 

follows: 

1. Cell type heterogeneity. Both the whole brains and the saliva examined contain 

heterogeneous mixtures of cell types. Thus, the epigenomic signals analyzed 

represent a mixed profile that may be representative of alterations to a single cell 
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type or even be heterogeneous within single cells themselves. A deeper 

understanding this heterogeneity will aid in the knowledge of cell types to be 

targeted for functional studies, diagnostics, and/or therapeutics.  

2. Whole genome coverage. The mouse arrays utilized were designed to study CpG 

islands, specifically promoters, while the human arrays utilized were designed to 

study individual CpG shores. Future studies would benefit from the use of 

unbiased designs that allow for the investigation of a number of other features, 

such as enhancers and gene bodies, or preferentially the whole genome.  

3. Direct comparisons. This research made use of adult mouse whole brains and 

buccal swabs from children. To allow for a more direct comparison, future 

research would benefit from also examining buccal cells in mice and human post-

mortem brains. This additional characterization would provide a reference point to 

identify which alterations are tissue specific and which are species specific.   

4. Integrated analysis. This thesis has demonstrated the utility of genome-wide 

scans for both gene expression and DNA methylation in identifying candidate 

genes. Approaches examining a number of epigenetic marks alongside gene 

expression would help prioritize candidates.   

5. Larger sample sizes. The results of this thesis are limited by sample size and 

genetic diversity. An increase in both would increase statistical power. 

6. A developmental reference epigenome. The epigenome appears to create more 

variation than the genome alone. Therefore, an understanding of the extent of this 

variation across tissues would allow for the determination of modifications that 

are inherited, stochastic, and/or environmentally induced. 

7. Functional confirmation of candidate loci. While systems biology based 

approaches are suited for discovery, they also require functional confirmation 

experiments to show causation of a candidate in producing an endophenotype. 

Functional experiments could be carried out by epigenome editing with 

CRISPR/Cas9 biotechnology (Day 2014; Laufer & Singh 2015). First, mouse 

models without PAE would be used to establish causation by recreating key 

marks, which include differential methylation in imprinting control regions for 

Snrpn-Ube3a and Dlk1-Dio3 as well as the clustered protocadherins, Colec11, and 
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Htt. Then, a series of experiments could be carried with the opposite effector that 

targets the same regions in PAE mice. These causative confirmation experiments 

could be used to develop therapeutic interventions for FASD patients that are 

based on somatic epigenome editing of the brain (once the technology is 

developed for the clinic).  

5.4 Conclusions 

The results of this thesis present a number of conclusions, which are derived from 

observations in adult PAE mice and human children with FASD. The similarities come 

from functionally diverse tissues that are derived from a common stem cell progenitor.  

The analysis of adult PAE mice shows that: 

1. PAE results in long-term alterations to gene and ncRNA expression as well as 

DNA methylation in the adult brain. 

2. While genome-wide, the alterations to the epigenome are non-random and occur 

in: 

o Imprinted clusters of ncRNA: Snrpn-Ube3a and Dlk1-Dio3. 

o Functional sites of genes related to neurodevelopment, stem cell signaling, 

and immune processes.  

3. Chronic and moderate PAE or acute and binge PAE at any time point in 

pregnancy distinctly alters the epigenome.  

The observations in children with FASD reveal that: 

1. DNA from buccal swabs of children with FASD contains a genome-wide DNA 

methylation signature related to neurodevelopment, which distinguishes children 

with FASD from matched controls. 

2. Targeted sequencing of a select gene does not identify FASD in a random child 

from the general population. 

The comparison of adult PAE mice to human children with FASD shows that: 

1. The alterations to methylation occur in functionally related genes and pathways; 

however, the specific genes altered are generally not identical.   

2. The clustered protocadherins display a large-scale increase in methylation in both 

PAE mice and humans. 
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In conclusion, the results of this thesis provide foundational evidence for the long-

term effects of gene-by-environment interactions. They suggest that deregulation of the 

epigenome can be inherited across cell divisions and maintain long-term alterations that 

originate from developmental exposures. The results also suggest that non-invasively 

obtained buccal swab DNA contains a signature of neurodevelopmental exposure in 

humans. Furthermore, the results demonstrate that rodent models may be used as a 

reference point when analyzing the complexities of the human epigenome. Aside from the 

relevance of the results to FASD, the results also provide insight into basic biological 

principles. Chromatin is a dynamic molecule that enables a static linear sequence of DNA 

to maintain a molecular memory of developmental events and form distinct tissues. 

Disruption of this programing by adverse environmental experiences can result not only 

in immediate consequences to the exposed stem cells but may also be inherited across cell 

division and maintained in resulting differentiated cells. As the epigenome is more 

dynamic than the genome, therapeutic treatment of disorders through novel epigenetic 

avenues represents a frontier in personalized medicine.  
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Appendix A – IPA® miRNA target filter analysis of CPD PAE adult mouse brains.  
 

miRNA   Fold Change Gene  Fold Change 
let-7d* -1.5 Aak1 1.2 

mir-124* -1.3 Aak1 1.2 
mir-133b -1.4 Aak1 1.2 

mir-369-5p -1.3 Aak1 1.2 
mir-25 -1.2 Aak1 1.2 
mir-27a -1.4 Aak1 1.2 
mir-495 -1.2 Aak1 1.2 

mir-331-3p -1.2 Aak1 1.2 
mir-34b-3p -1.3 Aak1 1.2 

mir-500 -1.3 Aak1 1.2 
mir-124* -1.3 Adamts9 1.2 

mir-369-5p -1.3 Adamts9 1.2 
mir-25 -1.2 Adamts9 1.2 

mir-30a* -1.3 Adamts9 1.2 
mir-495 -1.2 Adamts9 1.2 

mir-34b-3p -1.3 Adamts9 1.2 
mir-362-5p -1.2 Adamts9 1.2 

mir-489 1.2 Ankrd49 -1.2 
mir-124* -1.3 Cspp1 1.3 

mir-369-5p -1.3 Cspp1 1.3 
mir-495 -1.2 Cspp1 1.3 

mir-340-5p 1.2 Ddit4l -1.3 
mir-200a* 1.2 Ddit4l -1.3 
mir-27a -1.4 Dnajc13 1.3 
mir-30a* -1.3 Dnajc13 1.3 
mir-200a* 1.2 Eapp -1.2 
mir-369-5p -1.3 Ephb1 1.3 

mir-495 -1.2 Ephb1 1.3 
mir-369-5p 1.3 Fam155a 1.3 
mir-30a* -1.3 Fam155a 1.3 
mir-124* -1.3 Gpatch8 1.2 
mir-15a* -1.2 Gpatch8 1.2 

mir-369-5p -1.3 Gpatch8 1.2 
mir-199b* -1.2 Gpatch8 1.2 

mir-25 -1.2 Gpatch8 1.2 
let-7d* -1.5 Hmga2 1.2 

mir-15a* -1.2 Hmga2 1.2 
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mir-369-5p -1.3 Hmga2 1.2 
mir-25 -1.2 Hmga2 1.2 

mir-146b 1.2 Nuak1 -1.3 
mir-19b 1.4 Nuak1 -1.3 

mir-151-5p 1.2 Nuak1 -1.3 
mir-152 1.2 Otx2 -1.3 

mir-369-5p -1.3 Pten 1.4 
mir-25 -1.2 Pten 1.4 
mir-495 -1.2 Pten 1.4 
mir-743a 1.3 Rps27l -1.2 
mir-15a* -1.2 Slc24a1 1.2 
mir-27a -1.4 Slc24a1 1.2 
mir-17* 1.5 Slitrk2 -1.2 
mir-17* 1.5 Tbc1d17 -1.3 
mir-146b 1.2 Tmem19 -1.2 

mir-340-5p 1.2 Tmem19 -1.2 
mir-369-5p -1.3 Trdn 1.2 
mir-30a* -1.3 Trdn 1.2 
mir-495 -1.2 Trdn 1.2 

mir-369-5p -1.3 Ypel1 1.2 
mir-199b* -1.2 Ypel1 1.2 
mir-27a -1.4 Ypel1 1.2 

Results were obtained from gene and miRNA expression arrays respectively. They are filtered based on 
confidence of interaction, brain specificity, and an inverse miRNA (p<0.3, fold change 1.15) to target 
mRNA (p<0.05, fold change 1.2) relationship. 
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Appendix B – Individual heatmaps of differential miRNA expression generated using 
hierarchical clustering of the four PAE paradigms (p<0.05 and 1.2-fold change cut-off). 
Experimental mice are labelled red and control mice are labelled blue. 
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Appendix C – Venn diagram of common and unique differentially expressed miRNAs 
identified by four PAE models (p<0.05 and 1.2-fold change cut-off). 
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Appendix D – Differentially expressed snoRNAs in the Snrpn-Ube3a region (chromosome 7) identified by miRNA and gene 
expression arrays in all PAE paradigms (p<0.05 and 1.2-fold change cut-off). 
 

Snrpn-Ube3a CPD     Trimester 1     Trimester 2     Trimester 3     

miRNA array       ID FC p ID FC p ID FC p 

  *No Significant ncRNAs* HBII-52-48 1.2 0.049 HBII-52-2 1.2 0.044 HBII-52-15 1.5 0.001 

       HBII-85-7 -1.3 0.037 HBII-85-22 -1.3 0.001 HBII-85-29 1.4 0.026 

       HBII-85-23 -1.8 0.050 HBII-85-26 -1.2 0.039      

       HBII-85-24 -1.4 0.039           

       HBII-85-28 -1.4 0.009           

Expression Array Ensembl ID FC p Ensembl ID FC p       Ensembl ID FC p 

MBII-52 ENSMUST00000101805  1.4 0.019 ENSMUST00000097244 1.4 0.009 *No Significant ncRNAs* ENSMUST00000102015 1.5 0.003 

  ENSMUST00000101980  1.2 0.003 ENSMUST00000101805 1.2 0.050      ENSMUST00000102017 1.3 0.017 

  ENSMUST00000101860  1.3 0.035 ENSMUST00000101861 1.2 0.050      ENSMUST00000102028 1.6 0.001 

  ENSMUST00000101803  1.2 0.002 ENSMUST00000101896 1.3 0.004      ENSMUST00000102037 1.4 0.025 

  ENSMUST00000097244  1.3 0.0003 ENSMUST00000101917 1.3 0.017      ENSMUST00000102046 1.3 0.022 

  ENSMUST00000101917  1.2 0.038 ENSMUST00000101935 1.3 0.017           

  ENSMUST00000101951  1.3 0.017 ENSMUST00000101935 1.5 0.029           

  ENSMUST00000101896  1.2 0.0002 ENSMUST00000101980 1.3 0.028           

  ENSMUST00000101932  1.2 0.0002 ENSMUST00000102037 1.3 0.038           

  ENSMUST00000101816  1.4 0.004                   
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Appendix E – Differentially expressed ncRNAs from Dlk1-Dio3 and Sfmbt2 (p<0.05 and 1.2-fold change cut-off). A) Dysregulated 
ncRNAs from the Dlk1-Dio3 region (chromosome 12) identified by miRNA and gene expression arrays in all PAE paradigms. B) 
Dysregulated imprinted miRNAs encoded in the Sfmbt2 region (chromosome 2) identified by miRNA expression arrays in all PAE 
paradigms. 
 

A) Dlk1-Dio3 CPD     Trimester 1     Trimester 2     Trimester 3     

 miRNA array ID FC p ID FC p ID FC p ID FC p 

   miR-679 1.2 0.03 miR-665 1.2 0.05 miR-666-5p -1.2 0.003 miR-665 -1.2 0.03 

   miR-300 -1.3 0.05      miR-369-5p 1.3 0.003 miR-434-3p 1.2 0.01 

             hp_mmu-mir-300 1.3  0.021 miR-376b -1.7 0.04 

             hp_mmu-mir-379 -1.2  0.031 miR-544 -1.3 0.02 

                  hp_mmu-mir-485 -1.3 0.04 

 Expression Array Ensembl ID FC p             Ensembl ID FC p 

 SNORD 113 ENSMUST00000082745  1.3 0.02 *No Significant ncRNAs* *No Significant ncRNAs*   ENSMUST00000082553 -1.5 0.01 

   ENSMUST00000082553  1.3 0.02           ENSMUST00000082611 -1.5 0.01 

   ENSMUST00000082611  1.3 0.02           ENSMUST00000082786 1.6 0.04 

   ENSMUST00000082786  1.2 0.04             ENSMUST00000082792 -1.3 0.00 

              

B) Sfmbt2 CPD     Trimester 1     Trimester 2     Trimester 3     

 miRNA array ID FC p ID FC p ID FC p ID FC p 

   miR-466f-3p 1.4 0.02 hp_mmu-mir-669j 1.72  0.002  miR-466b-3p -1.4 0.04 miR-467b 1.3 0.04 

   miR-467c -1.2 0.01     miR-669a -1.8 0.05 miR-467a-1* -1.3 0.04 

   miR-467a* 1.9 0.01     miR-466e-3p -1.5 0.0002 hp_mmu-mir-297c -1.3  0.037  

   miR-466c-3p 1.2 0.003     miR-466c-3p -1.9 0.03 hp_mmu-mir-466e -1.7  0.034  

   miR-669h-3p 1.6 0.01     hp_mmu-mir-297b -1.4 0.03 hp_mmu-mir-466f-2 -1.6 0.05 

   hp_mmu-mir-466h 1.3 0.03     hp_mmu-mir-297c -1.6 0.02 hp_mmu-mir-466h -1.6 0.03 

            hp_mmu-mir-466e -1.3 0.03 hp_mmu-mir-669j -1.4 0.0002 

            hp_mmu-mir-466f-2 -1.3 0.05 hp_mmu-mir-669m-1 -1.4 0.02 

               hp_mmu-mir-669d -2.1 0.03       
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Appendix F – Ingenuity Pathway Analysis Legend 
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