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Abstract 
 

Maternal obesity during pregnancy is associated with neurodevelopmental disorder 
(NDD) risk. We utilized integrative multi-omics to examine maternal obesity effects on offspring 
neurodevelopment in rhesus macaques by comparison to lean controls and two interventions. 
Differentially methylated regions (DMRs) from longitudinal maternal blood-derived cell-free fetal 
DNA (cffDNA) significantly overlapped with DMRs from infant brain. The DMRs were enriched for 
neurodevelopmental functions, methylation-sensitive developmental transcription factor motifs, 
and human NDD DMRs identified from brain and placenta. Brain and cffDNA methylation levels 
from a large region overlapping mir-663 correlated with maternal obesity, metabolic and immune 
markers, and infant behavior. A DUX4 hippocampal co-methylation network correlated with 
maternal obesity, infant behavior, infant hippocampal lipidomic and metabolomic profiles, and 
maternal blood measurements of DUX4 cffDNA methylation, cytokines, and metabolites. 
Ultimately, maternal obesity altered infant brain and behavior, and these differences were 
detectable in pregnancy through integrative analyses of cffDNA methylation with immune and 
metabolic biomarkers.   
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Introduction 
 
In North America, more than half of pregnant women are considered to be overweight or 

obese.1,2 Maternal obesity and related metabolic conditions are associated with a significantly 
increased risk of offspring with neurodevelopmental disorders (NDD), including autism spectrum 
disorders (ASD).3–7 NDDs are increasing in prevalance,8 and ASD is currently diagnosed in 1 in 54 
children in the United States of America, where the diagnosis is ~4x more prevalent in males than 
females.9 The elevated risk of an NDD/ASD resulting from maternal obesity is hypothesized to be 
related to a complex cascade of metabolic and inflammatory events that alter developmental 
gene regulatory networks. In mice, maternal obesity is associated with sex-specific differences in 
embryonic brain gene expression, affecting genes related to immunity and inflammation, 
metabolism, oxidative stress, and development.10 Also in mice, maternal high fat diet results in 
differences in maternal metabolism and inflammation that alter adult offspring brain 
inflammation and behavior.11,12 In Japanese macaques, maternal high fat diet resulted in 
metabolic and cytokine differences with long-lasting effects on offspring behavior.13 In humans, 
altered metabolites have been observed in the serum of mothers of young children with ASD, 
including those related to the one-carbon metabolism, critical for the epigenetic modification 
DNA cytosine methylation.14 In mice, a perinatal high-fat diet was found to alter one-carbon 
metabolism and DNA methylation in the prefrontal cortex of male offspring.15 The effect of 
maternal obesity on one-carbon metabolism in offspring was also seen in baboons fed a high-fat, 
high-energy diet.16 Together, these findings demonstrate that maternal diet alters cytokine and 
metabolic profiles during pregnancy and suggest that these contribute to altered behavior and 
brain DNA methylation profiles in offspring from obese mothers. However, challenges remain in 
understanding the epigenetic mechanisms that explain inter-individual differences following 
exposure to maternal obesity in humans. 

As the maternal-fetal interface, the placenta is the fetal organ that is first affected by the 
altered metabolites and cytokines resulting from maternal obesity. In humans, pre-pregnancy 
obesity associated with elevated inflammatory cytokine levels in maternal serum and differential 
expression of genes related to nutrient transport and immunity in the placenta.17 Maternal pre-
pregnancy obesity and trimester-specific gestational weight gain is associated with differential 
DNA CpG methylation in the placenta.18 Maternal obesity is also associated with differential CpG 
methylation and expression of adiponectin and leptin genes in human placenta.19 Adiponectin 
and leptin are adipokines, which are cytokines secreted by adipose tissue that function as cellular 
signaling molecules, and their overexpression results in inflammation and altered 
metabolism.20,21 Alterations to inflammatory cytokine levels, which include adipokines, have 
been associated with ASD,22–24 and cytokines play a critical role at the placenta.25,26 Functionally, 
the placental DNA methylome retains profiles of early embryonic development, including 
neurodevelopment.27–29 Previously, we have shown that genome-wide DNA methylation profiles 
can distinguish human placental samples from newborns later diagnosed with ASD compared to 
typically developing controls and that DNA methylation profiles are shared between placenta and 
embryonic brain in a mouse model of a human NDD/ASD relevant environmental exposure.30,31 
This epigenetic convergence between placenta and brain suggests that placental DNA 
methylation can inform about individual NDD/ASD risk.  

Ideally, epigenetic biomarkers of individual NDD/ASD risk would be obtained during 
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pregnancy in order to design behavioral and therapeutic strategies for improved child outcomes. 
However, direct fetoplacental sampling is invasive and increases the risk for pregnancy loss. For 
this reason, non-invasive prenatal testing (NIPT) has become an increasingly attractive option for 
fetal diagnostics.32 NIPT is based on assaying the cell-free fetal DNA (cffDNA) that circulates in 
the blood of pregnant mothers,33,34 and originates from the trophoblasts of the placenta.35–37 
cffDNA is generated by developmental apoptosis, during turnover of the syncytiotrophoblast, 
and is released into maternal circulation as a membrane bound entity.38,39 Furthermore, cffDNA 
contains a DNA methylation profile representative of its placental origin.40–42 cffDNA represents 
between 12-41% of cell-free DNA (cfDNA) in the plasma of pregnant women with the percent 
contribution increasing throughout pregnancy and the remainder of the profile originating from 
neutrophils, lymphocytes, and the liver.43 Taken together, these findings suggest that DNA 
methylation profiles of placenta, sampled during pregnancy through cffDNA, can be developed 
to inform about NDD/ASD risk. 
 
Results 
 
Rhesus macaque maternal obesity models 

 
In order to characterize the multi-factorial molecular cascade that results from maternal 

obesity, we generated longitudinal cffDNA methylomes from four pregnancy timepoints across 
all trimesters as well as three infant brain regions (hippocampus, prefrontal cortex, and 
hypothalamus) at 6 months old (Fig. 1a). We integrated the DNA methylome results obtained 
from whole genome bisulfite sequencing (WGBS) with two behavioral tests assessing infant 
recognition memory, immunological markers in maternal blood across pregnancy, maternal 
blood and infant brain metabolomics, and infant brain lipidomics. The model was based on 
naturally obese rhesus macaque dams that we previously demonstrated produce offspring with 
a relevant neurobehavioral profile.44 In addition to comparing obese (n = 7) to lean matched 
controls (n = 6), we also examined the effects of dietary (caloric restriction, n = 5) and 
pharmacological (pravastatin, n = 7) obesity interventions, and examined a total of 25 male 
offspring.  
 
cffDNA methylation profiles are consistent with the placental methylome 
 

First, to assess the quality of the cffDNA methylomes, we performed two analyses to 
confirm that we could recapitulate previous findings. To confirm that the DNA methylation profile 
of the cffDNA represents its placental origin more closely than cfDNA in a non-pregnant female, 
we performed a pilot experiment to compare the DNA methylation profiles of the three sample 
sources (placental biopsies, cffDNA, and cfDNA) in lean macaques. Principal component analysis 
(PCA) of the average smoothed methylation levels from regulatory regions and gene bodies 
revealed that the cffDNA shows a closer relationship to the placenta than cfDNA (Supplementary 
Fig. 1a). Next, using the primary samples for the study, we leveraged the fact that the pregnancies 
were all screened to be male fetuses and utilized the ratio of reads from the Y and X 
chromosomes to show that the fetal fraction of the cffDNA increased throughout the different 
trimesters of pregnancy (Supplementary Fig. 1b). Taken together, these results demonstrate that 
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the cffDNA methylation profiles are consistent with the fetal origin of the placental methylome.  
 
Both cffDNA and brain DMRs map to genes involved in neurodevelopment, cellular adhesion, and 
cellular signaling 

In order to test the hypothesis that maternal obesity and interventions alter DNA methylation 
patterns in cffDNA and brain, we performed pairwise contrasts of obese vs. control, (caloric) 
restriction vs. obese, and pravastatin vs. obese, for the cffDNA samples from maternal blood 
during trimester 1 (GD45), trimester 2 (GD90), early trimester 3 (GD120), and late trimester 3 
(GD150) as well as brain region samples from the hippocampus, prefrontal cortex, and 
hypothalamus of the same infants at 6 months (Supplementary Table 1). Each pairwise DMR 
comparison generated background regions with similar gene length and CpG content, and these 
were used in most downstream enrichment testing to control for genomic context. We then 
examined the DMRs for each pairwise comparison for potential consistency across time and 
tissue. A large subset of the DMRs from the pairwise contrasts map to genes that overlap for 
obese vs. control (Fig. 1b), caloric restriction vs. obese (Fig. 1c), and pravastatin vs. obese (Fig. 
1d). The overlaps are not only apparent across different pregnancy timepoints and brain regions 
for their respective sources but a subset also converge between cffDNA and brain. Next, the 
genomic coordinates of the DMRs across all pairwise comparisons were merged into separate 
consensus regions for cffDNA and brain and the same was done for their respective background 
regions. The overlap between cffDNA and brain consensus DMRs was significant (empirical p = 
0.0001) in two separate analytical approaches, which included a permutation approach (n = 
10,000) based on region overlap that placed the DMRs randomly across the entire genome, while 
maintaining their size, and a random sampling approach (n = 10,000) based on nucleotide overlap 
that utilized background regions with similar genomic context (CpG content and length).  

The convergence of DNA methylation alterations associated with maternal obesity was 
consistent with the gene ontology (GO) analyses of the cffDNA (Fig. 2a) and brain (Fig. 2b) 
consensus DMRs, relative to their background regions, which were enriched (q < 0.05) for terms 
related to neurodevelopment, cellular adhesion, and cellular signaling. Additionally, the top GO 
terms from the cffDNA DMRs (anatomical structure morphogenesis, nervous system 
development, anatomical structure development, plasma membrane bounded cell projection 
organization, cell adhesion, and movement of cell or subcellular component) and the brain DMRs 
(nervous system development, cell junction, and cytoskeletal protein binding) also passed a more 
stringent significance (FWER < 0.1) threshold (Supplementary Table 2), which was based on 100 
random sets from samplings of their respective consensus background regions. The GO terms 
were also consistent with the significant (q < 0.05) PANTHER (Protein Analysis THrough 
Evolutionary Relationships) pathways, which demonstrated a shared effect on integrin signaling, 
glutamatergic synapses, and angiogenesis in both cffDNA and brain (Fig. 2c-d, Supplementary 
Table 3). Next, to examine the gene regulatory relevance of the consensus DMRs, they were 
tested for enrichment within human transcription factor motifs from a methylation-sensitive 
SELEX (Systematic Evolution of Ligands by EXponential enrichment) experiment.45 The top 
transcription factors for both the cffDNA (Fig. 2e) and brain (Fig. 2f) consensus DMRs, relative to 
their background regions, were from the hairy and enhancer of split (HES) and activating protein-
2 (AP-2) families, and overall the top enrichments were related to methylation sensitive 
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developmental transcription factors (Supplementary Table 4).  
The relevance of the obesity consensus DMRs to previously identified human NDD-associated 

DMRs was tested by lifting over the consensus DMRs to the human genome (hg38). The lifted-
over consensus DMRs were tested for enrichment within DMRs from updated analyses of 
previously published male idiopathic ASD brain, male Dup15q syndrome brain, female Rett 
syndrome brain, and male Down Syndrome brain and unpublished idiopathic male and female 
ASD placenta.30,46–48 In a permutation approach based on region overlap, the consensus cffDNA 
and brain DMRs significantly (q = 0.0012) overlapped with all human NDD datasets. In a random 
sampling approach of background regions based on nucleotide overlap, the DMR overlaps 
showed similar significance (q < 0.05), although neither set of consensus DMRs showed a 
significant enrichment for the female ASD placenta DMRs (Table 1). Notably, the male Down 
syndrome brain DMRs had a lower enrichment score than the other ASD-related brain DMR 
datasets in both analytical approaches.  

 
A large block of DNA hypermethylation overlapping mir-663 is shared between cffDNA and brain 
 
 In addition to the DMR analyses, we also performed a separate analysis to detect larger-
scale blocks of differential methylation in cffDNA and brain associated with maternal obesity and 
intervention (Supplementary Table 5). The top overall hit in most pairwise contrasts was a large 
block of differential methylation (chr20:29790471-29824182, width = 33,712 bp) that was 
hypermethylated by maternal obesity in both cffDNA and brain. The block was primarily 
represented by a CpG dense 14.6 kb region (Fig. 3a). In cffDNA, the maternal obesity group 
showed the highest methylation level, the intervention groups showed an intermediate level of 
methylation, and the control group showed the lowest level of methylation. In brain, the 
maternal obesity group showed the highest level of methylation. The block mapped to a cluster 
of genes that code for mir-663, ribosomal RNAs (28S, 18S, and 5.8S), 2 novel lncRNAs, a 
pseudogene, and 3 novel protein coding genes. These results demonstrate the stability across 
time and tissue type of a maternal obesity DNA methylation difference spanning an entire 33.7 
kb chromosomal locus that presented an intermediate methylation level in the intervention 
groups during pregnancy. The methylation levels for all cffDNA timepoints and brain regions 
showed significant positive correlations with maternal obesity (Fig. 3b-c). The longitudinal cffDNA 
methylation levels of the mir-663 block correlated with inflammatory maternal immune markers 
and distinct metabolites during their respective pregnancy timepoint (Fig. 3b & Supplementary 
Fig. 2). The infant brain region methylation levels of the block showed significant negative 
correlations with caloric restriction and abstract stimuli recognition memory as well as a 
significant positive correlation with social stimuli (face) recognition memory (Fig. 3c & 
Supplementary Fig. 3). The brain methylation values also correlated with distinct metabolites 
measured from their respective regions, and the prefrontal cortex showed a negative correlation 
with C20:3 Homo-γ-linolenic acid/8,11,14-eicosatrienoic acid concentrations in that brain region. 
 
A DUX4 co-methylation network in infant hippocampus correlates with maternal obesity, 
behavior, metabolites, lipids, and cffDNA methylation 
 
 In order to further investigate gene networks associated with maternal obesity and 
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integrate with additional data sets, weighted gene co-methylation network analysis (WGCNA) of 
WGBS data from infant hippocampus was performed. The signed network demonstrated scale-
free topology (Supplementary Fig. 4), leading to the identification of 5 modules of co-methylated 
regions and their respective hub regions (Table 2). The identified modules were tested for 
correlations with a suite of traits that included behavioral tests relevant to the hippocampus 
(abstract stimuli and social stimuli recognition memories) as well as lipidomic and metabolomic 
measurements from the hippocampus (Fig. 4a & Supplementary Fig. 5). Notably, the blue module 
showed a number of significant (p < 0.05) negative and positive correlations with all classes of 
traits measured. The blue module eigengene was negatively correlated with the maternal obesity 
group, positively correlated with the abstract stimuli recognition memory, and negatively 
correlated with the social stimuli (face) recognition memory (Fig. 4a-b). The blue module 
eigengene was also positively correlated with the concentration of multiple polyunsaturated 
essential fatty acids (PUFAs) in the hippocampus and linoleic acid was the most prominent (Fig. 
4a-b). The blue module eigengene was also positively correlated with the concentrations of the 
metabolites asparagine, citrate, glycerol, and guanosine, and negatively correlated with the 
concentrations of β−hydroxybutyric acid, glutathione, and uridine monophosphate (UMP) in the 
hippocampus (Fig. 4a-b). 

The blue module was composed of 104 regions out of 151,892 regions examined (Fig. 4c & 
Supplementary Table 6). On average, the regions in the blue module were 1,841 bp and they 
mapped to 82 unique genes. The hub for the blue module was an intergenic region that mapped 
to ENSMMUG00000060367, which is a novel gene that is an ortholog for human DUX4 (double 
homeobox 4) and is termed DUX4 (region) 6. Notably, the blue module was composed of 21 
interconnected regions that mapped to DUX4, which spanned 206,145 bp (chr9:427125-633269), 
were between -158,396 bp to 44,716 bp from the DUX4 transcription start site (TSS), and were 
hypomethylated overall in hippocampi from the offspring of obese mothers. The regions in the 
DUX4 co-methylated network mapped to genes that were primarily associated with functions 
related to gene regulation, metabolism, immunity and inflammation, NDDs, oxidative stress, 
obesity and adipogenesis, Wnt signaling, glutamatergic synapses, endoplasmic reticulum, and 
reproduction (Table 3).  

Next, the blue module eigengene was tested for correlations with traits from maternal blood 
across 4 time points that represented all trimesters of pregnancy, specifically with DUX4 cffDNA 
methylation levels, cytokine levels, and metabolite levels (Fig. 4d & Supplementary Fig. 6). These 
relationships were dynamic across pregnancy, as cffDNA DUX4 methylation levels within region 
1 of the module (chr9:631319-633269, width = 1,951 bp) were positively correlated with the blue 
module eigengene in trimester 1 but negatively correlated with the module in early trimester 3. 
There were strong negative correlations between the blue module eigengene and levels of 
several immunological biomarkers of obesity associated inflammation, with the strongest 
association being MCP−1 (CCL2) levels during trimester 1, IL-10 during trimester 2, sCD40L during 
early trimester 3, and IL-8, TGF-α, and High−sensitivity C−reactive Protein (hs−CRP) during early 
and late trimester 3. Several metabolites in maternal blood throughout pregnancy showed both 
positive and negative correlations with the blue module eigengene, including a positive 
correlation with creatine during trimester 1 and 2, as well as negative correlations with glutamine 
and arginine during trimester 1. The maternal metabolites showing the most prominent 
correlations with the hippocampal blue module eigengene were generally related to one-carbon 
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metabolism (choline, creatine, and glycine) and metabolism of amino acids by the tricarboxylic 
acid cycle (α−Ketoglutaric Acid, arginine, glutamine, and succinate), which is also known as the 
citric acid cycle and the Krebs cycle.49,50  
 
Discussion 
 
 There are four key findings from this integrative multi-omic analysis of offspring DNA 
methylation and outcomes resulting from exposure to maternal obesity and intervention in a 
non-human primate model that are relevant to human NDD/ASD. First, the longitudinal analysis 
of cffDNA throughout pregnancy demonstrated that cffDNA methylation was consistent with the 
functions and pathways disrupted in infant brain, particularly for DNA methylation patterns over 
large genomic blocks at mir-663 and DUX4. Second, the caloric restriction and pravastatin 
intervention groups displayed intermediate methylation levels in these regions throughout 
pregnancy. Third, cffDNA methylation levels at DUX4 correlated with the co-methylated DUX4 
gene network in 6-month infant hippocampus, which correlated with infant social and abstract 
recognition memory, infant hippocampal and maternal blood metabolites, and infant 
hippocampal lipids. Fourth, the maternal obesity DMRs overlapped with DMRs from human 
ASD/NDD brain and placenta.   

To expand on the above summary, the results demonstrate that maternal obesity is 
associated with the differential methylation of a subset of common genes in both cffDNA and 
brain. The differentially methylated genes associated with maternal obesity in cffDNA and brain 
are enriched for functions related to neurodevelopment, cellular adhesion, and cellular signaling. 
Notably, they converge on pathways known to be affected in NDD/ASD. These include 
glutamatergic synapses,51 angiogenesis,52 integrin signaling (which is involved in cellular 
adhesion),53 EGF receptor signaling, and PDGF signaling. Additionally, the brain displayed 
differences in methylation that were consistent with other neurotransmitters and hormone 
signaling pathways related to NDDs/ASD, which include thyrotropin (also known as thyroid 
stimulating hormone; TSH), oxytocin,54,55 serotonin, and acetylcholine.  
 Functionally, the DMRs are consistent with disruptions to the regulation of gene 
expression, since they are enriched for the motifs of human transcription factors that are 
methylation sensitive and involved in early development.45 The top motif enrichments overall 
were for the HES and AP-2 families. The HES genes are transcriptional repressors involved in early 
embryonic development and neurodevelopment that function to regulate the differentiation and 
proliferation of neural stem cells.56,57 The binding of HES transcription factors to their motifs is 
inhibited by DNA methylation.45 The HES genes are effectors of Notch signaling pathway and 
cross-talk with JAK-STAT signaling, which is activated by cytokines.58 Additionally, HES1 is a 
thyroid response gene in the fetal brain,59 which was the top pathway for the fetal brain DMRs 
associated with maternal obesity and intervention in our study. The AP-2 transcription factors 
are also involved in early embryonic development, where they stimulate cell-type specific 
proliferation and repress terminal differentiation.60 The top motif from this family belongs to 
transcription factor gene AP-2 gamma (TFAP2C), which is specifically involved in both placental 
development and redundantly for retinoic acid induced differentiation of the neural tube,61,62 
and thus represents a direct connection between the two sample sources.  
 In addition to discovering a profile of thousands of DMRs of several hundred bp in width, 
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in cffDNA and brain, we also identified larger-scale blocks of differential methylation in cffDNA 
and brain that associated with maternal obesity and intervention. The mir-663 block was ~34 kb 
in size and overlapped several genes, many of which have unknown functions and warrant future 
functional research. However, mir-663 is associated with obesity and adipocyte differentiation, 
immunity and inflammation, the mechanism of resveratrol action, and cancer in humans.63–67 In 
our study, hypermethylation of the block in cffDNA correlated with maternal obesity as well as 
increased maternal inflammatory markers and differential metabolite levels during pregnancy. 
In infant brain, hypermethylation of the block not only correlated with maternal obesity and 
infant metabolites, but also with infant behavior and negatively with the caloric restriction 
intervention. The effect on brain lipids was most pronounced in the prefrontal cortex and through 
decreased concentrations of C20:3 Homo-γ-linolenic acid/8,11,14-eicosatrienoic acid, which has 
anti-inflammatory effects. Through a WGCNA approach, we also identified a key co-methylated 
network whose hub was a large ~200 kb block of differential methylation that mapped to DUX4. 
DUX4 is a homeobox transcription factor that is expressed in cleavage stage embryos and testes, 
and is epigenetically silenced in most other tissues.68 Incomplete silencing of DUX4, which is 
located in the D4Z4 repeat in humans, results in Facioscapulohumeral muscular dystrophy (FSHD) 
through pathogenic misexpression of DUX4 in skeletal muscle due to DNA hypomethylation of 
the locus.69 This misexpression ultimately leads to an immune deregulation cascade,68 and can 
be repressed by targeted epigenetic editing.70 Notably, the DUX4 DNA hypomethylation in FSHD 
directionally corresponds with the DUX4 co-methylation network we observed in hippocampus, 
where the maternal obesity with no intervention group was hypomethylated when compared to 
the control and obesity intervention groups.  

The regions in the DUX4 co-methylation network mapped to genes with functions highly 
related to its significantly correlated phenotypes. The ERBB2 (Erb-B2 Receptor Tyrosine Kinase 2) 
mapping is consistent with the differences in recognition memory as the gene is known to 
regulate hippocampal glutamatergic long-term depression and object recognition memory.71 
Additionally, the glutamatergic synapse is represented in the network by OLFM3 and PRKX, as 
well as in the top pathways for the consensus cffDNA and brain DMRs. The top pathway from the 
brain DMRs is also represented in the co-methylation network by SLC16A2, which is a thyroid 
hormone transporter. Of relevance to the lipidomic profile is a region mapping to FFAR4 (Free 
Fatty Acid Receptor 4), which is a GPCR (GPR120) for PUFAs that is involved in adipogenesis, 
metabolism, and inflammation.72,73 Levels of linoleic acid (LA, 18:2n-6), an omega-6 PUFA that is 
a ligand for FFAR4, correlated with the co-methylation network. LA is known to increase neurite 
outgrowth in the developing brain,74–76 and lower levels of LA have also been observed in the 
serum of children with autism.77 The impact of the DUX4 co-methylation network on 
neurodevelopment is also apparent through the correlation of asparagine, as the network 
contains the gene ASNS (Asparagine Synthetase). ASNS deficiency is a neurometabolic disorder 
characterized by severe congenital microcephaly and developmental delay.78 The metabolic 
differences in the brain are also represented by the correlation of the co-methylation network 
with uridine monophosphate (UMP) and a region mapping to UPP2 (Uridine Phosphorylase 2). 
Other notable genes in the co-methylation network include: PCDH11X, which is associated with 
ASD,79 ZFHX3 and ZFHX4, which are homeobox genes that act as transcription factors that 
regulate myogenic and neuronal differentiation, and ASIP (Agouti Signaling Protein), which is 
involved in obesity.80 
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The DUX4 co-methylation network also showed several significant negative correlations with 
maternal blood markers during pregnancy that are known to be associated with obesity. 
Methylation of the DUX4 module was negatively correlated with inflammatory 
cytokines/adipokines in maternal blood throughout different trimesters of pregnancy, including 
MCP-1 (CCL2), which is both a monokine and adipokine,81 as well as the chemokine IL-8 and the 
regulatory cytokine IL-10, which are associated with excess bodyweight.82 Additionally,  the DUX4 
module showed a negative correlation with C-reactive protein (CRP), a marker of inflammation 
that has been observed to be altered in the serum of mothers with autistic children during 
pregnancy.83,84 Increased levels of MCP-1, IL-8, and CRP have been observed in the blood of obese 
human mothers during pregnancy.17,85 Finally, the differences in maternal metabolites are 
consistent with previously known impacts on one-carbon metabolism.14–16  

Taken together, the correlations of the DUX4 co-methylation network in infant hippocampus 
demonstrate that the lean control and intervention groups had higher levels of methylation than 
obese pregnancies in the DUX4 co-methylation network, which significantly correlated with 
differences in behavior related to abstract stimuli and social stimuli recognition memory, higher 
PUFA concentrations in the brain, and differing levels of metabolites related to 
neurodevelopment. Furthermore, the higher methylation levels of this module significantly 
correlated with lower levels of maternal inflammatory cytokines/adipokines and differences in 
maternal one-carbon metabolism and metabolism of amino acids by the tricarboxylic acid cycle 
during pregnancy.  

Ultimately, the methylation profiles of both the mir-663 block and the DUX4 co-methylation 
network from the infants of obese mothers without an intervention correlated with decreased 
recognition memory for abstract stimuli and increased recognition memory for novel social 
stimuli (faces). The findings demonstrate that, in infant brain, maternal obesity is associated with 
a DNA methylation profile at gene loci relevant to recognition memory, lipids, and metabolites. 
These differences in brain multi-omics and behavior can be detected during pregnancy through 
integrative analyses of cffDNA with immune and metabolic biomarkers. Furthermore, maternal 
obesity interventions associated with an attenuation of the multi-omic profile in both infant brain 
and maternal blood. Together, these findings lay the groundwork for retrospective and 
prospective studies aimed at developing human ASD/NDD diagnostic predictors by utilizing 
machine learning approaches to select a panel of integrative markers from maternal blood. 

 
Methods  
 
Non-human primate obesity models 
 

All animals were housed at the California National Primate Research Center (CNPRC) in 
accordance with the ethics guidelines established and approved by the Institutional Animal Use 
and Care Administrative Advisory Committee at the University of California-Davis. 

Adult pregnant female rhesus macaques (Macaca mulatta) with male fetuses were 
selected for this study.  Sex of the fetus was determined with a cell-free fetal DNA Y chromosome 
gene analysis of maternal blood and was performed early in the first trimester by the CNPRC 
Primate Assay Core. All dams ranged in age from 7 to 12 years and were selected for lean and 
obese groups based on their Body Condition Score (BCS).86 Obese females had a BCS of at least 
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3.5 (range 1 – 5) which correlates with 32% body fat, and lean animals had a BCS of 2 – 2.5. 
Animals had maintained a consistent BCS for at least one year prior to selection for the study and 
pre-study physicals confirmed that none of the selected females were diabetic. All animals were 
maintained with standard indoor housing conditions at CNPRC and fed nine “biscuits” of 
commercial chow (High Protein Primate Diet Jumbo; LabDiet; 5047) twice daily while pregnant, 
received biweekly fresh produce, daily forage mixture, and ad libitum water. The caloric 
restriction group had the amount of chow restricted to prevent weight gain during pregnancy 
and the Pravastatin group was given 1 mg/kg of body weight. However, all dams, regardless of 
group, were provided twelve biscuits twice daily during nursing of 4 months or older infants. 
Dams were relocated to a single housing room around gestational day 70.  Approximately two 
weeks later they were paired with a compatible cage mate during daytime hours and were 
separated prior to feeding times. Dams were allowed to deliver naturally (~165 day gestation 
length) and mother-infant pairs were raised indoors until offspring were 6 months old. However, 
five pregnant dams required Cesarian deliveries for post-date pregnancies (~175 gestation days) 
or as recommended by veterinarians for health reasons, two in the obese group, one in the 
pravastatin group and two in the lean control group. In those scenarios, infants were successfully 
reared to 6 months of age by foster dams using established CNPRC protocols.87 Mother-infant 
dyads were housed indoors with another compatible mother-infant dyad during daytime hours 
if possible; however, this was not possible for 1 lean control dyad, 3 obese dyads, and 1 
pravastatin dyad. Infant brain samples (hippocampus, hypothalamus, and prefrontal cortex) 
were collected on postnatal day 180 after infants were anesthetized with ketamine and 
euthanized with 120 mg/kg pentobarbital. Upon collection, samples were immediately frozen 
and stored at -80 °C. 
 
Abstract stimuli recognition memory 
 

Infants were tested at 200 days gestational age (days from conception; ~1 month old) to 
avoid differential maturity due to variation in gestation length (range: 152-176 days).  The mean 
postnatal age was 36 days (range: 22-49 days).  Infants were separated from mothers, wrapped 
in a towel and carried to the testing station. The testing apparatus consisted of a small booth 
with side panels to shield from outside distractions in a darkened room in which the stimuli, 9 
cm2, were mounted on the left and right of a center viewing hole.  One tester held the infant 36 
cm away from the stimuli, changed the stimuli and covered the infant’s head between trials.  A 
second tester sat behind the apparatus and viewed the infant’s head through a video camera to 
record fixation times to the left and right. Two identical stimuli were placed on the right and left 
until the infant accumulated a familiarization time of 20 sec. One stimulus, randomly determined, 
was then removed and replaced with the novel stimulus. The frequency and duration of looking 
was recorded for 10 sec, then the stimuli were exchanged between sides for another 10 sec test 
period. The infant was presented with a series of four black and white visual stimuli pairs 
(abstract illustrations of varying complexity) used in the Fagan Test of Infant Intelligence for 
human infants (Infantest Corp). Videos were scored for right/left looking using The Observer 
coding software (Noldus) by a coder blind to stimulus location and animal treatment group. The 
evaluation relies on the propensity of monkey as well as human infants to look longer at novel 
than familiar visual stimuli. The outcome measure used in this study was the average across the 
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four problems of the number of looks at the novel stimulus divided by the number of looks at the 
novel and familiar stimuli during test trials.88 All infants in the lean control group had a ratio >0.50 
indicating novelty preference. 
 
Social stimuli recognition memory 

 
Animals were tested at a mean age of 105.3 days (range: 96-124). They were separated 

from their dams and relocated to individual housing indoors in a standard size housing cage 
(0.58m x 0.66m x 0.81m, Lab Products). Approximately 2.5 hours after the separation/relocation, 
they were given a visual paired comparisons task. Each animal was hand-carried to a test cage 
measuring 0.387m x 0.413m x 0.464m that was positioned 0.686m from a 0.813m monitor 
(Panasonic, KV 32540), was given 30-sec to habituate, and was then presented with seven 
problems from a pre-recorded video. Each problem included three trials: a familiarization trial 
and two recognition trials. After a 5-sec blank screen, a 20-sec familiarization trial began, in which 
two identical pictures were presented, each measuring 19.7 x 22.9 cm, separated by 25.4 cm of 
white space onscreen. After another 5-sec delay, an 8-sec recognition trial occurred, in which the 
now-familiar stimulus was presented simultaneously with a novel stimulus (side determined 
randomly). Following another 5-sec delay, the same two stimuli were presented again for 8-sec, 
with positions reversed. Seven such problems were presented. All stimuli were pictures of 
unfamiliar juvenile and adult monkeys of both sexes.89 A tone of 1000 Hz was presented 250 
milliseconds prior to trials in order to orient the animal. A low-light camera (KT&C, 
KTLCMB5010EX), attached to the display monitor and situated midway between the two 
projected images, was used to record the subjects’ looking responses. Looking behavior during 
the familiarization and recognition trials was scored by a trained observer who was blind to the 
animals’ treatment groups. For each problem, the proportion of looking time directed at the 
novel stimulus was computed: duration of viewing the novel stimulus on the two recognition 
trials divided by the duration of viewing both the novel and familiar stimuli in the recognition 
trials. The principal outcome measure was a mean of this proportion across the seven problems. 
Chance responding was indicated by a mean of 0.50, with lower values suggesting a preference 
for the familiar stimuli and higher values indicating preference for the novel stimulus. Upon 
completion of testing, the subject was returned to its holding cage, and the test area was cleaned 
and prepared for the next subject. 
 
Lipidomics 
 

The lipid extraction protocol was performed as previously described.90 Briefly, 30 mg of 
homogenized half brain samples were used. Upon obtaining Folch bottom layers, lipids were 
evaporated under nitrogen, reconstituted into 1.5mL chloroform (Fisher Scientific; Cat #C607-4): 
isopropyl alcohol (Fischer Scientific, Cat #464-1) (v/v; 2/1). Approximately 0.5mL of extract, with 
0.0125 mg 5α-Cholestane (Sigma-Aldrich, Cat #C8003-100mg), and 0.1mg C17:0 PC (1,2-
diheptadecanoyl-sn-glycero-3-phosphocholine (Avanti Polar Lipids; 850355C) was dried under 
nitrogen for fatty acid and cholesterol analysis. Upon drying, 400 µL of toluene (Fisher Scientific; 
T2914) was added, followed by 3 mL of methanol (Fisher Scientific; Cat #A454-4), and 600 µL of 
3% HCl (Sigma-Aldrich; 320331) in methanol. The transesterification reaction to generate fatty 
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acid methyl esters (FAMEs) was adapted from previous research.91 Samples were vortexed and 
heated at 90°C for 60 min. After cooling the samples at room temperature for 4–5 min, 1 mL of 
hexane (Fisher Scientific; H303-4) followed by 1 mL of deionized water was added to each sample. 
Samples were vortexed and the phases were allowed to separate for 15 min. Then, 900 µL from 
the hexane top layer containing FAMEs was transferred to microfuge tubes containing 450 µL of 
deionized water. The tubes were vortexed and centrifuged at 15,871 g for 2 min. The top hexane 
layer was evaporated under nitrogen and then reconstituted in 100 µL hexane for GC-FID (Gas 
Chromatography with Flame-Ionization Detection) analysis.  

A simultaneous FAME and cholesterol GC-FID method was developed by optimizing two 
previous methods.92,93 Samples were analyzed on a Perkin Elmer Clarus 500 GC-FID system 
(Perkin Elmer) equipped with a DB-FFAP polyethylene glycol fused capillary column (30 m × 0.25 
mm inner diameter, 0.25 μm film thickness; Agilent Technologies; 1223232). The injector and 
detector temperatures were 285°C and 300°C, respectively. The initial oven temperature was 
80°C. It was held at 80°C for 2 min, increased by 10°C/min to 185°C, raised to 249°C at 6°C/min 
and lastly held at 240°C for 44 min. The total run time was 65 min. Helium was used as the carrier 
gas with a maintained flow rate of 1.3 mL/min. The injection volume was 1 µL per sample. The 
split ratio was 10:1. A custom-made mix of 29 FAME standards was used to identify each fatty 
acid based on retention time. Fatty acid concentrations were determined by comparing GC peak 
areas to the internal standard area. Cholesterol concentration was calculated based on a five-
point standard curve of cholesterol and 5α-Cholestane as surrogate. The linear dynamic range of 
the calibration curve for cholesterol was 0.125 mg/mL to 2 mg/mL.    

 
Metabolomics 
 

Fasting blood was collected in lavender top (EDTA) tubes from mothers once during the 
1st and 2nd trimesters and twice during the 3rd trimester after anesthetization with 5-30 mg/kg 
ketamine or 5-8 mg/kg telazol. Plasma samples were filtered using Amicon Ultra Centrifugal 
Filters (3k molecular weight cutoff, Millipore) to remove proteins and lipids. Metabolites were 
extracted from each of the brain tissues as previously described.90 To 207 µL of either plasma 
filtrate or brain tissue extract, 23 µL of internal standard containing DSS-d6 was added and 
samples were placed in 3 mm Bruker nuclear magnetic resonance (NMR) tubes. Proton NMR 
spectra were acquired on each sample at 25 °C using the noesypr1d pulse sequence on a Bruker 
Avance 600 MHz NMR spectrometer (Bruker, Billerica, MA, USA) and analyzed using Chenomx 
NMRSuite (version 8.1, Chenomx Inc) as previously described.90 
 
Immunology 
 

A longitudinal analysis on the maternal cytokine/chemokine profile that included 22 
analytes (GM-CSF, IFN-γ, IL-1b, IL-ra, IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, IL-12/23(p40), IL-13, IL-15, IL-
17a, IL-18, MCP-1, MIP-1b, MIP-1a, sCD40L, TGFα, TNFα, and VEGF) was measured in plasma 
using a non-human primate multiplexing bead immunoassay (Millipore-Sigma, Burlington, MA) 
according to the manufacturer’s protocol. The plates were read on a Bio-Plex 200 system (Bio-
Rad Laboratories, Hercules, CA, USA) and analyzed using Bio-Plex Manager software (Bio-Rad 
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Laboratories). A five-parameter curve was used to calculate final concentrations (pg/ml). 
Reference samples were run on each plate for assay consistency. 
 
DNA extraction and WGBS library preparation 
 

The cffDNA was extracted from serum using a Maxwell RSC cffDNA Plasma Kit (Promega; 
AS1480) by the Primate Assay Laboratory Core at the California National Primate Research 
Center. The brain DNA was isolated from tissue stored in DNA/RNA shield (Zymo Research; 
R1100-250) using the Quick-DNA Miniprep Plus kit workflow on a Tecan instrument by Zymo 
Research. Brain DNA was fragmented using a E220 focused-ultrasonicator (Covaris; 500239). DNA 
was bisulfite converted using the EZ DNA Methylation-Lightning Kit (Zymo Research; D5031). 
WGBS library preparation was performed via the Accel-NGS Methyl-Seq DNA Library Kit (Swift 
Biosciences; 30096) with the Methyl-Seq Combinatorial Dual Indexing Kit (Swift Biosciences; 
38096) according to the manufacturer’s instructions. The primary cffDNA libraries were prepared 
by Swift Biosciences and the brain libraries were prepared by the UC Davis Genome Center. The 
primary cffDNA and brain library pools were sequenced by the UCSF Center for Advanced 
Technology (CAT) core facility on the Illumina NovaSeq 6000 S4 for 150 bp paired end reads. The 
pilot cffDNA library pool utilized the Methyl-Seq Set A Indexing Kit (Swift Biosciences; 36024) and 
was sequenced by the DNA Technologies and Expression Analysis Cores at the UC Davis Genome 
Center on an Illumina HiSeq 4000 for 90 bp single reads. 

 
Bioinformatic analyses 
 

The CpG_Me alignment pipeline (https://github.com/ben-laufer/CpG_Me & doi: 
10.5281/zenodo.5030083), which is based on Trim Galore, FastQ Screen, Bismark, Picard, and 
MultiQC, was used to trim adapters and methylation bias, screen for contaminating genomes, 
align to the reference genome (rheMac10), remove duplicates, calculate coverage and insert size 
metrics, extract CpG methylation values, generate genome-wide cytosine reports (CpG count 
matrices), and examine quality control metrics.94–100 cffDNA samples were examined for their 
ratio of chrY/chrX reads (https://github.com/hyeyeon-hwang/SexChecker). 

DMR calling and most downstream analyses and visualizations were performed via 
DMRichR (https://github.com/ben-laufer/DMRichR & doi: 10.5281/zenodo.5030057), which 
utilizes the dmrseq and bsseq algorithms.100–102 A methylation difference of 10% was used for the 
cffDNA DMR analyses and 5% was used for the brain DMR analyses, as previously described for 
placenta and brain.30,48 Background regions with similar genomic context to the DMRs (gene 
length and CpG content) were obtained from the first step of dmrseq and utilized in downstream 
enrichment testing. ChIPseeker (was used to obtain gene region annotations and gene symbol 
mappings through ensembldb.103,104 ComplexUpset was used to create UpSet plots of gene 
overlaps.105–107 GOfuncR was used for genomic coordinate based gene ontology (GO) analyses, 
where DMRs were mapped to genes if they were between 5 Kb upstream to 1 Kb downstream of 
the gene body, and 100 random samplings from the background regions with gene length 
correction was utilized for the enrichment testing.108,109 The DMRs were mapped to genes if they 
were within 5 kb upstream or 1 kb downstream of the gene body. Redundant GO terms were 
then removed based on semantic similarity using rrvgo.110 enrichR was used for gene symbol 
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based PANTHER pathway enrichment testing.111–114 regioneR was utilized to perform 
permutation based genomic coordinate enrichment testing through a randomized region 
strategy with 10,000 permutations.115 GAT was used to perform random sampling based genomic 
coordinate enrichment testing through 10,000 samplings of background regions.116 Analysis of 
Motif Enrichment (AME) in the MEME Suite was utilized to perform transcription factor motif 
testing relative to background regions using the Human Methylcytosine database with rheMac10 
sequences through the memes package.45,117–119 The WGCNA package was used to a construct a 
signed co-methylation network through the biweight mid-correlation (bicor) method.120,121 
 
Data Availability 
 
 The raw and processed WGBS data has been deposited in GEO (Accession #: Available 
upon publication). All original code has been deposited on GitHub (https://github.com/ben-
laufer/cffDNA-and-Brain-Manuscript).  
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Table 1: Human NDD-associated DMR enrichments for the consensus cffDNA DMRs and 
consensus brain DMRs. 

Dataset cffDNA DMRs Brain DMRs 
NDD Sex Tissue Fold q-value Fold q-value 
ASD Female Placenta 1.05 0.3 1.08 0.1 
ASD Male  Placenta 1.25 0.04 1.26 0.03 
Down Syndrome Male Brain 1.12 0.008 1.37 0.0002 
ASD Male Brain 1.36 0.0002 1.51 0.0002 
Rett Syndrome Female Brain 1.53 0.0002 1.69 0.0002 
Dup15q Syndrome Male Brain 1.28 0.0002 1.74 0.0002 

 

Table 2: WGCNA module hub genes. 

Module Coordinates Width Annotation Gene Mapping 

Green chr18:45038579-45038736 158 Intron 
CELF4 
CUGBP Elav-like Family Member 4 
ENSMMUG00000006866 

Yellow chr4:139959607-139965208 5602 3' UTR 
MAMU-A3 
Major Histocompatibility Complex, Class I, A 
ENSMMUG00000056914 

Blue chr9:443230-472517 29288 Intergenic 
DUX4 
Double Homeobox 4 
ENSMMUG00000060367 

Brown chr10:26959768-26960135 368 Intergenic ENSMMUG00000051997 

Turquoise chrY:8116120-8122200 6081 Intergenic 
LOC106995433 
Heat Shock Transcription Factor, Y-linked-like 
ENSMMUG00000049379 
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Table 3: Manually curated blue module co-methylated network gene mapping categories. 

Category Genes 
Gene Regulation AGO1, ARID5B, BRD7, DUX4, ETV1, EXOSC9, JDP2, HLCS, 

KLF4, KLF12, NFE2L3, PAXBP1, PRMT9, SFSWAP, WDR82, 
ZC3H12C, ZFHX3, ZFHX4, ZNF362, ZNF721 

Metabolism ASNS, DGKH, DPY19L2, EDEM3, EXOSC9, FFAR4, GMDS, 
HLCS, ITIH6, KLF4, KLK13, LYVE1, NUDT7, PHEX, PRMT9, 
SENP1, UPP2 

Immunity and Inflammation ARID5B, ACVR2A, CD99, CST7, DOCK11, EXOSC9, FFAR4, 
IFTAP, IRAG2, LRRC32, LYVE1, NCF2, PRKX, TNFRSF11A, 
ZC3H12C 

Neurodevelopmental Disorders  ASNS, CHL1, EFR3A, ERBB2, EXOC6B, GPC5, LRRC32, 
PCDH11X, POMK, PTPRG, SLC16A12, TNIK, VWA3B, WDR82 

Oxidative Stress FAM120A, NCF2, NFE2L3, NUDT7, PXDNL, TXNL1 
Obesity and Adipogenesis ACVR2A, ARID5B, ASIP, FFAR4, KLF4, KSR2 
Wnt Signaling BRD7, JDP2, PCDH11X, SHISA7, TNIK 
Glutamatergic Synapses ERBB2, OLFM3, PRKX 
Endoplasmic Reticulum EDEM3, IRAG2, NFE2L3, UFL1 
Reproduction DPY19L2, MAGEB1, MROH5 
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Figure Legends:  
 
Fig. 1: cffDNA and brain DMR overlaps. A) Experimental design and timeline (created with 
BioRender.com). UpSet plots of the overlaps of gene mappings from pairwise DMR comparisons 
of B) obese vs. control, C) caloric restriction vs. obese, and D) pravastatin vs. obese for cffDNA 
and brain.  
 
Fig. 2:  Functional enrichments for the consensus cffDNA and brain DMRs. Top slimmed gene 
ontology (GO) enrichment testing results for the A) cffDNA and B) brain consensus DMRs.  Top 
PANTHER pathway enrichments for the C) cffDNA and D) brain consensus DMRs. Top human 
methylation sensitive transcription factor motif enrichment testing results for the E) cffDNA and 
F) brain consensus DMRs. The motif names indicate whether the transcription factor was full-
length ("-FL") or an extended DNA-binding domain ("-eDBD"), if the CpGs were methylated ("-
methyl"); and the number (starting with “-1”) distinguishes between multiple motifs. 
 
Fig. 3: A large block of obesity associated DMR hypermethylation in cffDNA and brain. A) Plot 
of methylation levels in the main block region. The dots in the scatter plot are individual DNA 
methylation level estimates for a CpG site and their size reflects the level of coverage from the 
sequencing. Percent DNA methylation is presented on the y-axis and the x-axis is the genomic 
coordinate of each CpG, where the ticks show the location of the methylation loci. The bottom 
right track contains CpG annotations and gene mappings and for the block. B) Correlation 
heatmap of the relationship between longitudinal cffDNA methylation levels in the block and 
maternal blood immune markers and metabolites measured during the same trimester. The 
heatmap colors are representative of the correlation between the methylation values and the 
trait of interest. The correlation values are reported above their p-values in parentheses. The 
obesity group refers to maternal obesity with no intervention. C) Correlation heatmap of the 
relationship between infant brain region DNA methylation levels in the block and infant 
hippocampal lipids and metabolites measured from the same brain region. The plots and 
statistical testing are based on the region of highest CpG density (chr20:29807471-29822071, 
width = 14,601 bp), which represents the primary signal of the entire block (chr20:29790471-
29824182, width = 33,712 bp). 
 
Fig. 4: Weighted gene co-methylation network (WGCNA) of infant hippocampus. A) Module-
trait correlations within the hippocampus. The heatmap colors are representative of the 
correlation between the module eigengenes and the trait of interest. The obesity group refers to 
maternal obesity with no intervention. The correlation values are reported above their p-values 
in parentheses and these values also apply to the expanded plots in part B of the figure. B) Bar 
plot of the mean eigengene values for the blue module in each maternal group, and scatter plots 
with a line of best fit for the eigengene values and abstract stimuli recognition memory score 
ratios, social stimuli recognition memory score ratios, linoleic acid concentrations, asparagine 
concentrations, and citrate concentrations. C) The blue module maternal obesity co-methylation 
network. Regions were mapped to their nearest gene and novel genes were labelled with 
mammalian ortholog symbols, if available. Genes represented by more than one region were 
appended with a unique number identifier. Edges were included in the network if they passed an 
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adjacency threshold and thus not all genes in the module are represented in the visualization. D) 
Hippocampal blue module-trait correlations with maternal blood measurements of DUX4 cffDNA 
methylation levels, immunological markers, and metabolites across all trimesters of pregnancy.  
 
Supplementary Fig. 1: cffDNA technical confirmation experiments from the pilot and main 
experiments. A) Principal component analysis (PCA) of smoothed methylation levels from gene 
regulatory and gene body regions (+5 kb to -1 kb from the gene body) comparing cffDNA, cell-
free DNA (cfDNA) from non-pregnant mothers, and placental biopsies from different pregnancy 
time points in the pilot experiment. The outermost color around each dot represents the 
individual animal. B) Line plot of the ratio of Y chromosome reads over X chromosome reads for 
the cffDNA methylomes across all pregnancy timepoints for the different groups from the main 
experiment. 
 
Supplementary Fig. 2: Expanded heatmap of the correlation between longitudinal cffDNA 
methylation levels in the block and maternal blood immune markers and metabolites measured 
during the same trimester. 
 
Supplementary Fig. 3: Expanded heatmap of the correlation between infant brain region DNA 
methylation levels in the block and infant hippocampal lipids and metabolites measured from the 
same brain region. 
 
Supplementary Fig. 4: Analysis of scale-free topology used to determine the soft-thresholding 
power for infant hippocampal DNA methylation network construction.  
 
Supplementary Fig. 5: Expanded infant hippocampus module-trait relationship heatmap.  
 
Supplementary Fig. 6: Expanded hippocampal blue module-trait correlations with maternal 
blood measurements across all trimesters of pregnancy. 
 
Supplementary Table 1: Annotated cffDNA and brain DMRs (empirical p < 0.05) from all pairwise 
obesity comparisons. 
 
Supplementary Table 2: GO enrichments for the consensus cffDNA DMRs and consensus brain 
DMRs. 
 
Supplementary Table 3: PANTHER pathway enrichments for the consensus cffDNA DMRs and 
consensus brain DMRs. 
 
Supplementary Table 4: Human methylation sensitive transcription factor motif enrichments 
within the consensus cffDNA DMRs and consensus brain DMRs. 
 
Supplementary Table 5: Annotated cffDNA and brain blocks (empirical p < 0.05) and background 
blocks from all pairwise obesity comparisons. 
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Supplementary Table 6: Annotated regions from the infant hippocampus blue module maternal 
obesity network. 
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